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Steiner Problem Solved with Genetic Algorithm
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Abstract

This article introduces into the genetic algorithms(GA) and it’s applications on the Steiner op-
timization problem. It is possible to create cost optimal plans for power and gas distribution
with the Steiner problem in graphs. The article shows few new modified methods to solve Steiner
problem with genetic algorithms. The modifications are based on the better start point of the GA
algorithm, operators modifications and other. These methods are compared with known methods
Takahashi Matsuyama algorithm and Kou, Markowsky and Berman heuristic.
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1. GENETIC ALGORITHMS (GA) INTRODUCTION

Described genetic algorithms with few more comments can be found in the [6], [2].
The genetic algorithm (GA) is a search procedure that optimizes some objective
function f by maintaining a population P of candidate solutions and employing
operations. Operations are inspired by genetics (called crossover and mutation)
to generate a new population from the previous one. The candidate solutions are
encoded as a bit strings usually.

One point Crossover:. provides a method to combine two candidates from the
population to form two new candidates. For example, take first k bits from two n
bit strings A and B and switch them together to form two new candidates.

More point Crossover:. We expect two bit strings
B=(b1,ba, .., bpos, Dpost1,---,bx) and C=(c1,Ca, ..., Cpos, Cpost1s-- -5 Ck)
each with k bits length.

—Lets do the m-point crossover ( m < k, m is an integer constant, ).
—Generate m random integer points z; from interval (1, %k — 1). We will sort that
points like :

1< <a<...<xpm 1<, <k-1

—New pair of individuals after m -point crossover:

(b1,bay vy bgy s Cogaty e o s Cany Dpnttyeoeyeney by s Co 11, ., cp) and

(617627' . '7cxlabzl+17 .. '7bz2vcm2+17' tegeee 7me7bxm+17 .. '7bk)

Uniform crossover:. This cross over is the same as other crossover but after
crossover two worst candidates from parents and offsprings are deleted. We se-
lect two different parents for crossover .
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Mutation:. provides a method to modify one candidate in the population. The
random flipping of one bit in a candidate is one possible mutation.

Selection:. In this article we use selection of the new population called roulette
selection.
—Evaluate fitness of each candidate v; and note as eval(v;),

t=1,...,pop_size

pop_size - size of the population '
—Evaluate fitness of the population as F = S 171=""" eval(v;)

—Calculate candidate’s selection probability p; for each candidate v;
p; = eval(vi)/F

—Calculate group probability ¢; for each candidate v;

i
%=y p
j=1

—Choose random number r from the interval (0, 1)

—We select first canditate in to the new population if r < ¢1, otherwise candidate
v; is selected in to the population if ¢; 1 <71 < ¢;.

The two last points repeat while new population is not filled.

The most important part of the GA is an evaluation of the fitness for each candidate.
The fitness of candidate represents a probability to stay in a new population for
candidate.

Genetic algorithms allows parents with good fitness to stay in next population
usually.

2. THE STEINER PROBLEM IN GRAPHS

The NP hard Steiner problem in graphs (SPG) is to find connected subgraph for a
given vertices from G with minimal cost.

In the SPG is given graph G = (V, E) and subset V' C V (V- set of vertices, E-
set of edges).

Graph G' = (V' E") is a connected subgraph of the graph G induced with V' |
where

[’Ul',Uj eV'A (’Ui,’l)j) S E] = (’Ui,’l)j) € FE

Complete graph is a graph with connected vertices to each other. Complete graph
with cost of edge e,,, equals to the shortest path in the graph G ( sp(v, w) ) is called
range graph of graph G. Cost function ¢ : E — R assigns real number to each edge
in a graph. The sum of all edge costs from G is the graph cost ( ¢(G) ).

Steiner problem in graphs (SPG): We have a connected undirected graph
G = (V, E), a positive cost function ¢ : E — R, and a subset W C V' (vertices from
W are called terminals). The goal is to find connected subgraph G’ = (V', E'),
where W C V' and cost ¢(G') is minimal. Connected and acyclic subgraph G’ of
the graph G where W C V' is called steiner tree for W in graph G. The result G’
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with minimal cost is called minimal steiner tree (MStT) for W in G. We define a
steiner vertices from G'as set S CV \ W, where V! =W [JS.
The following notations will be in use here : n = V|, p=|W|ar=n—p.

3. GA ALGORITHM FOR THE SPG

Author of the following algorithm is Esbensen [3] and this article shows some mod-
ifications to get better results. Here we have individuals with best fitness (they will
stay in the next population) and individuals with worst fitness (they will die) as it
is usual in GA.

Algorithm 1: GAMStT
/¥INPUT - graph and set of the terminals from the MStT definition
*
/
/¥*OUTPUT - found optimal Steiner tree with minimal cost */
graphReduction();
RandomlyGenerate(®.); Evaluate(®.); /* fitness from section [1]
*
A=BestOf(®.);
repeat until stopCriteria();
D, =0
...repeat N/2 times:
...... choose ¢ € ®., ¢ € B.; /*Select parents™/
...... {41, s} =Crossover(dq, ¢2); /*Uniform crossover [section

...... D, =, {1, };

...end;
...Evaluate(®. | J ®,); /* fitness from section [1] */
... ®, =reduce(®. | P,);
...Y¢ € ®. : mutateWithProbability(¢); /*Mutation*/
..Vo € @, : invertWithProbability(¢); /*Reordering of a genes*/
...Evaluate(®.); /* fitness from section [1] */
... A=BestOf(®. J{A});
end;
optimize(\); /*heuristic algorithm*/
output(A); /*output the best one*/

Algorithm 1 works with population of an individuals as specific near optimal
results of the MStT problem. The Crossover and mutation genetic operators are
used in this algorithm. Individuals with highest fitness responds to the good optimal
result of MStT problem, after few generations. Whole graph is reduced with the
procedure graphReduction() described in [3] or [2]. The vertices and edges are
reduced after graphReduction(). This reduction is usefull to make smaller CPU
time consumption. Procedure optimize() runs KMB heuristic algortihm [4] on the
best individual after the GA simulation.
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4. GENOTYPE CODING IN GA

The main kernel for our GA is a well coded genotype. Coding represented here is
based on the Kou, Markowsky and Berman heuristic [4]. The timecomplexity of
this algorithm is O(pn?).

Genotype is a set of the steiner vertices paired with 1 or 0 in our problem. While
steiner vertex is paired with 0 then this vertex is not in the result graph represented
by individual otherwise it is. Decoder (KMB heuristic) calculates the fitness from
genotype (cost of the MStT represented by the individual). The KMB heuristic
as a decoder is called with input set W union with steiner vertices from current
genotype.

Predict numbered vertices V' \ W Steiner problem and = : {0,1,...r — 1} —
{0,1,...r — 1} is bijective function for current input . Genotype should be :

{(m(0),in(0)) , (T(1)sm(r)) 5o (7(r = 1) in(ey) }

, where i, € {0,1}, k = 0,1,...r — 1. Steiner vertices with the genotype are
represented as S = {vy € Vi = 1}. The KMB heuristic was choosed due to that
it returns right Steiner tree for any S set .

The following lines shows crossover example of the Steiner candidates.

We have parents

a:{(2,1),(0,1),(1,0),(4,0),(3,0)}

8:{(1,0),(2,1),(4,1),(3,1),(0,0) }
Step 1: reorganisation of the 3:

7:{(2,1),(0,0),(1,0),(4,1),(3,1)}

Step 2: Crossover in point x = 2:

¢:4{(2,1),(0,1),(1,0),(4,1),(3,1)}
¥ :{(2,1),(0,0),(1,0),(4,0),(3,0)}

5. GA FOR MSTT PROBLEM MODIFICATIONS

The global timecomplexity of the 1 algorithm is O(n3+Npn?+N log N +(n—p)pn?).
Where N is the given number of the individuals in the population (population size).

As we can see procedure Optimize() in the algorithm 1 has high time consumption
and its timecomplexity is O((n—p)pn?). We will replace KMB heuristic in procedure
Optimize() with TM algorithm [9] (Takahashi Matsuyama algorithm). The new
timecomplexity is O(min{p — 2,n — p}(pn* + |E|log|E|)) (number of the Steiner
vertices multiplied by TM algorithm complexity) . Assume that p—2 < n —p (our
set of test problems [1] meet this condition) then new Optimize() procedure has
timecomplexity O(p(pn? + |E|log|E|)).

—If p = n then a new optimize procedure is worse than an old

—If p < konst., or p = y/n then timecomplexity is better for the new optimize
procedure
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| group,/runs I opt.

| precision< 1% | <IKMB | <ITM [ time <IKMB [ time <ITM |

b/900 94.3% 98% 93% 92.2% 13% 13%
¢/1000 35.8% 64.5% 55.5% 45% 38.5% 4.5%
d/1000 35.5% 63% 37% 56.5% 58.5% 0%
e/160 35% 60% 65% 45% 45% 5%

Table I. Comparing Esbensen’s GA with IKMB and ITM for B, C, D, E groups.

This modification globally speed up GA but the result is not with better accurate.
The next modifications tries to get results with better accurate:

Procedure RandomGenerate() randomly generate zero population. We generate
3/5 of individuals with TM heuristic and others are generated randomly in the zero
population. This has timecomplexity O(N (pn® + |E|log |E|)) (where N is a size of
the population).

We have changed one point crossover genetic operator with three point uniform
crossover. Two new individuals are created in the uniform crossover. We choose two
best fitness individuals from this individuals and its parents as two new individuals.

6. EXPERIMENTAL RESULTS

This part describe comparision of the GA from Esbensen with our GA modification
and with well known algorithms IKMB, ITM (iterated version of KMB and TM).

The large connected graph test problems for MStT are from [1]. They are divided
into the four groups: B, C, D and E. These graphs were randomly generated with
integer positive cost edges under 10.

The B graphs: n = 100,p = 50 with 200 edges.

The C graphs: n = 500, p = 250 with 12500 edges.

The D graphs: n = 1000, p = 500 with 25000 edges.

More complex are graphs in the E: n = 2500, p = 1250 with 62500 edges.

Used parameters for GA: population size N = 40, mutation probability p,,.; =
0.005, inversion probability p;,, = 0.1. Second column in the tables describe opti-
mum achievement in the percentage. Third column represents number of the results
with the condition 100 * (1 — %) < 1. Number of better results than
IKMB or ITM algorithms results are shown in two next columns. The last two
columns represents number of the results found in shorter time than with IKMB
or ITM.
These tests were run on a server with AMD 800MHz, 384MB RAM with system
Mandrake Linux. The GA was running 50 times on each test problem from B, C,
D group test problems. Due to the time consumption test problems from the E
group were solved with GA eight times only. Exact results of the test problems
were calculated by Beasly with algorithm ,branch and cut on supercomputer Cray
X-MP /48 [1].

Total GA for Steiner tree problem in graphs was runned on 3060 problems.

7. CONCLUSIONS

The tables I and IT shows that our modification has better precision in the B, C
and E groups than Esbensen’s GA algorithm. The modification has better time-
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| group/runs [ opt. [ precision< 1% | <IKMB | <ITM | time <IKMB | time <ITM ]

b/900 99.3% 99.4% 99.3% 99.8% 10.6% 10.6%
¢/1000 56.9% 86.9% 74.7% 93.6% 82.5% 0%

d/1000 35.1% 72.5% 45.6% 99.3% 93.6% 6.9%
e/160 25.4% 62.1% 54.2% 100% 100% 35%

Table II. Comparing our modification GA with IKMB and ITM for B, C, D, E groups.

complexity on some examples as we can see. Due to the stochasticity the results
may be little other from time to time but here published complexity supports these
results generally.
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