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On the Existence and Nonuniqueness of an
Evolution System Solution
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Abstract

Many authors study generic properties of solutions for nonlinear ordinary and partial differential
problems (see for example [2], [3], [7]-[13]. The study of quantitative and qualitative properties of
solution sets is well-founded if the given problem possesses more than one solution.

The presented paper deals with existence theorems for bounded and unbounded nonlinearities
in the observed equation. There are solved some problems with the infinite number of cassis

solutions.
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1. INTRODUCTION

With respect to the theoretical and practical point of view, there is very often ne-
cessary to study quantitative and qualitative properties of set solution for nonlinear
problems. That’s the reason why we look for sufficient existence and no uniqueness
conditions for some differential systems in this paper.

The Peano phenomenon of the existence of a solution continuum of the initial
value problem for ordinary differential systems is well - known. This phenomenon
has been studied by many autors in [2], [3], [4], [3]. [17]. [21]. The structure of
solution sets of higher order partial differential equations was observed in papers
17]- 12]

In this paper we study questions of a solvability of quasilinear initial - boundary
value problems for evolutions systems of an even order with the continuous nonli-
nearities and the general boundary value conditions. Several initial-boundary value
problems with a continuum of smooth solutions are implemented in this paper.

The present results allow us to observe different problems describing dynamics of
mechanical processes (bendding, vibration), phisycal - heating processes, reaction -
diffusion processes in chemical and biological technologies or in the ecology.

2. THE FORMULATION OF PROBLEM, ASSUMPTIONS AND SPACES

The set 2 C R™ for n € N means a bounded domain with the boundary dQ2. The
real number T will be positive and ¢ := (0,T] x Q, T := (0,T] x 9. Tf we put the

multiindex k = (k1. . .., kn) with the module [k| = 3_ k;, then we use the notation

i—1

D for the differential operator % and Dy for 2. Tf the module [k| = 0
z, ... 0z, g
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then DX means an identity mapping. The symbol ¢/ M means the closure of the
set M in R™.

In this paper we consider the general system of p > 1 nonlinear differential equati-
ons (parabolic or non - parabolic type) of an arbitrary even order 2b (b is a positive

integer) with p unknown functions in the column vector form (ug,...,u,)? = u :
cl ) — RP. Tts matrix form is given as follows:
A(t,x, Dy, Dp)u+ f(t,x, Dju) = g(t,x) for (t.2) € Q, 2.1)
where
A(t,z,D¢, Dy)u = Dyu — Z ar(t,z)Dru — Z ap(t,z)D*u,
|k|=2b 0< |k|<26—1

and DJu is a vector function whose components are derivatives DJu; with the
different multiindices 0 < |y| <2b—1forl=1,...,p.

The system of boundary conditions is given by the vector equation with the bp
components

B(t,z,D,)ul p == (Bi(t,z, Dy)u, ..., Byy(t, , Dg,j)u)T|ch =0 (2.2)
in which
Bj(t,z, D,)u = Z bn(t, ) DFu
0<|k|<r;
for an integer 0 <r; <2b—1and j=1,...,bp.
Further the initial value homogeneous condition
u(0,2) = 0 for z € Q (2.3)

is considered.

Here the given functions are following mappings:
ay = (azl)gl:l celQ = R for 0 < |k| < 2b are (p x p)-matrix functions;
bir, = (b}k,l..,b;’k) :cll = R for 0 < |k| < rj, j = 1,...,bp are row vector
functions;
f=U1, )T :cd@ xR > R and g = (g1,.-.,9,)T : clQ — R” are column

vector functions, where k is a positive integer given by the inequality
n—1 n n+1
< |(701)+ (5)+ (73 )
n+|’y|—2> (n+|’y|—1>}
©+ + p
( Iyl =1 ol

Under several supplementary assumptions, linear problem (2.1)-(2.3) with f =0
defines homeomorphism between some Hélder spaces. These suppositions are :

(P) A 4 —uniform parabolic condition holds for system (2.1) in the sence of
J. G. Petrovskii, é > 0.

The system (2.1) and boundary conditon (2.2) are connected by

(C) a 67 - uniform complementary condition with 8+ > 0 and

(Q) a compatibility condition.

The coeflicients of the operator A(t, z, D¢, D,) from (2.1) and of B(t, z, D, ) from
(2.2) and the boundary 9 satisfy

78



On the Existence and Nonuniqueness of an Evolution System Solution

(S™*+2) a smoothness condition for a nonnegative integer [ and a number a €
(0,1).

We shall be employed with the Banach spaces of continuously differentiable
functions C%(cl @, R?) and Cé(ﬁb’l(cl @, R?) and the Hélder spaces CLte(cl Q, RP),
Cg;—a)/%’l"_a(cl @, R?) for a nonnegative integer [ and « € (0, 1).

For the exact definition of conditions (P), (C), (Q), (S+) see [18, pp. 12-21] or
for p =113, pp. 315-319] . For the definition of spaces see [18, pp. 8-12] or [6]
and for p =1 [13].

The homeomorphism result for (2.1) - (2.3) can be formulated as follows:

PROPOSITION 2.1. (See [18, p. 21] and [15, pp. 182-183].) Let the conditions
(P), (C) and (S%) be satisfied for a € (0,1). Necessary and sufficient conditions for
the existence and uniqueness of the solution

e Ct(2b+a)/2b,2b+a(ClQ R‘D)
of linear problem (2.1)-(2.3) for f =0 is
g€ CRlPP (el Q,R)

and the compatibility condition (Q).
Moreover, there exists a constant ¢ > 0 independent of g such that

Cil”QHa/Qb,a,Q,p < ||u|‘(2b+a)/2b,2b+a,Q,p < CHgHa/Qb,a,Q,p

3. THE SOLVABILITY OF NONLINEAR PROBLEMS

Using results on the Green matrix for linear problem (2.1)-(2.3) (with f = 0) we
shall study the existence of the given nonlinear problem from the Chapter 2.

To prove the existence theorem we shall use estimations of a Green
p X p—matrix and its derivatives from [15, pp. 182-183] under the assumptions
(P), (C), (S%). Hence we get the following lemma.

LEMMA 3.1. Let the asumptions (P), (C), (S%) be satisfy for « € (0,1). Then
we have for the Green matriz G of linear problem (2.1)- (2.3)with f =0

|DEDE Gt a57,6)] < et — )|l — gfjpm MR (3.1)

for 0 < 2bky + k| < 2b and p < (n + 2bky + |k|)/2b, thereby
0<r7<t<Tand x, £ € cl),  #£ & The positive constant ¢ does not de-

pend on t, x, 7, £ and E means the p X p—matriz compositing only from units,
r=2b/(2b—1).

Proof. From the estimation (see [15, pp. 182-183])

k k& ] _ n42bkg+|k| HI - f”]ﬁ?n
DDy Gt w7, O < er(t =)= exp{—er oyt <

_ bu— bk k
<oi(t— 1) TH|e — g D

X[l — El[gh /(¢ — ) ] 2oke =202 exp ([ || — €30 /(¢ — )]/ P
Since n + 2bkg + |k| — 2bp > 0 and ||z — {|jpr < diamQ sofor 0 < § <t —7 < T
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the estimation (3.1) is true. If 0 < t — 7 < § such with respect to

lim y“exp{—cy’} =0

y—+oc
for every u, v € R and ¢ > 0, we get the estimation (3.1) too. a
REMARK 3.1. For any z = (z1,...,2,) € R" the inequalities
n n
cn ) |zl < Jlallmn <Y Jail (3.2)
i=1 i=1

holds for ¢, € (0.1/(+/2)"1), n € N does not depend on z.

The aim of this part is to show that nonlinear problem (2.1)-(2.3) has at least
one mild solution (see the proof of Theorem 3.1) u € C2~1(cl (), R?) for continuous
functions f and g. Then we formulate examples of nonuniquely solvable problems.

THEOREM 3.1. (The existence theorem.) Let the hypotheses (P), (C), (Q), (S%)
for a € (0,1) be satisfied and g : ¢l Q — RP be continuous function at cl (). Let
f i @Qx(—oc,oc)® = RP be continuous and bounded function at ¢l QQ X (—oc, oc)”,
where K is the positive integer given in the formulation of the problem (2.1)-(2.3).
Then there is at least one mild solution u € CL'Y‘(CZQ,RI’) for0 < |y <2b—1 of
(2.1)- (2.3).

Proof. We use Lerray - Schauder fixed point theorem from [23, p. 56].

First the mild solution u € CJ! (el Q,R?) of the problem (2.1) - (2.3) satisfies the
column vector integro-differential equation

uta) = [ar [Ge.sre)l90.6) - 1.6 Dulr. ) 1de =
0 Q
=: (Su)(t,z) for (t,z) € cl @ (3.3)

and on the contrary the solution v € cly! (cl ), RP) satisfying (3.3) is called a mild
solution of (2.1)-(2.3).

Let us take an arbitrary u € Cg‘[” (el Q,RP) where 0 < |y| < 2b—1. Then there is
a constant M > 0 such that the vector inequality

\g(t,x) - f(t,I,E;u(t,I))‘ < M]

holds for all (¢,z) € ¢l @ and the column unit vector J. Put the estimation (3.1)
into (3.3) and embed ¢l Q2 into the ball

B(z,R) = {£ € R"; ||z — {|[g» < R, R > 0}.

for every z € ¢l ().
Then we have the vector inequalities

M o
T / e — €] 2 D geg <
Q

(DiSu)(ta)] <
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&Tlfu / |z — fH%bn”_("HkD del.

B(z,R)

Hence, putting z = (21, ...,24), £ = (&, ..., &) and using the spherical transfor-
mation

& = x1+rcosy
& = xo + rsinq COS Yo

Eno1 = Tp_1 +rsingysings...sing,_ocos@, 1

& = xp +rsing;sings .. .sin@,_9 8N @,_1

for r € (O,R), p; € (0,7),2 = 1,...,n —2 and ¢,—1 € (0,27) in the last in-
tegral, we get the estimation (the Jacobi determinant of this transformation is
n—1gipn=? 3 gL sing, o #0)

r sin (1 sin
(DE Su)(t,2)| < 20" TR R M e (b — [ (1 — )] := dPT

for (t,z) € el @ and |k|/2b < u < 1, where |[k| = 0,1,...,2b— 1. This consideration
implies the inclusion

S(G(0.d)) cG(0.d), d< > dF, (3.4)

0<|k|<26—1
where

G(0.d) = {v € CL(el QR [[v] o, <d, 0<y<2—1}.

ol Q.Re)

To prove the relative compactnes of the S(G(0,d)) we apply the Ascoli- Arzela
theorem [22, p. 83]. The equi-boundedness of S(G(0,d)) follows from (3.4). For
the equi- continuous of S(G(0, d)), observe the difference

((t,2),(s,y) €@, t<s,y=(Y1.---,Yn))
(D3 Su)(t,z) — (DySu)(s,y)| <

t
<M / dr / DIG(tx: 7€) — DIG(t,y;7.€)| deT +
Q Q
t
M / dr / DIG(t i, €) — DG (s, y:7.€)| dET +
Q Q

+ M [ dr [ |D}G(s,y;7.8)| d€J (3.5)
[*]

To estimate the first integral of (3.5) we use the mean value theorem, the esti-
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mation (3.1) from Lemma 3.1 and the inequalities (3.2) for the difference

DGt 57, €) = DIG(t i, &) < Joi — il | DIOG(t.27. 7€) <

i=1

< (c/cn)llz — yllrn (t — 1) HZH:E ¢||2n- @b (3.6)

Here the multiindex v(#) = (y1,.--, %1% + L.%it1,-- ) € R™ and 2] =
(W1, -, Yi1,2i, Tix1,---,Tn) € R?. The point z; lies between the numbers z;
and y;, [7(4)|/2b < p < 1 and ||z — y[lr= > ||z — 2 ||r~. By the last inequality we
obtain for |y| =0,1,...,2b -2

i
Jl,\'y\ = /dT/ ‘D;G(tIva) - D;G(tvyTvé.” df S leI _yHR"Ev (37)
0 Q

where the constant dy > 0 does not depend of ¢, , y.

In the case |y| = 2b— 1, we take the points z, y, & € ¢l Q satisfying the inequality
2||lz—y|lr, < |[—2||r,. Then, it is obvious that ||z—y|r, < ||z} —£|r,, whence ||z—
e, <z - aile, = ot — €k < o - yle, +
[z —&|lr, < 2||zF — &||r,. From the estimation (3.6) we obtain the inequality

‘D;G(tvxn-vf) - D;G(t,y;T,fﬂ <
< (cfen) -l —ylr, (t —7) "0 (27 2 — £|jp, )2H— (" H20)E.

If we put By = {£ € &; || — 2|, > 2|z — y|lr, } and By = Q — By, then we
have for (2b— 1+ «)/2b<p<1, a €(0,1)

(nefen y2nt2b—2bu

i
[ / ) (= R Ly g2 ey
0

By

J1,26-1

S[
[

t
2b 2b
/ /t—f M|z — yllr, |z — Rt ae | E <
0

B

< Gz -yl PR, ¢ > 0.

Again employing the mean value theorem and (3.1) we find t* € (¢, s) such that
\D}G(t,y;7,8) — DIG(s,y;7.8)| = [DDIG{A" y; 7. 8)|(s — 1) <

c(s = t)(t — 1) "H|ly — &l mHAD
for y <M+204+1Y)/20 O<t—7<t*—71),0< |y <20 - 1.
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Hence, if we put S; = {€ € el Q;|jy — €|Jpn < (s —t)/?} and So = I — S,
then by the estimate (3.1) we get for the two last integral members of (3.5) (0 <
[yl <26—1)

4
To = [ dr [ 103Gt m.6) — DIG(s, i lde +
0

Q

+ [ dr [ |D}G(s,y;7,8)|dE <
[#]

t 8
< / dr / DIG(t, i, )] de + / dr / |DIG(s, i, €)]de +
0 S1 4] S1
t
4 / dr / DIG(t,y; 7, €) — DIG(s, y; 7, €)|dé +
0 So

+ [ dr [ |DIG(s,y; 7, €)]dE <
[«

t

IA

t
¢ / dr / (t— 1) Aly — €2+ e
0

0
t

- / dr / (s —1)(t — 1) *ly — &l pr D ger +
0 S

S
- / " / (s =7)"lly = €llge ™"V agE +
S

+oe / dr [ (s— 1) 7|l — €2 ger (3.8)
t S

2

for 0 < A< (m+1|9)/2b, 0 < v < (n+|y])/2b, 0 < p < (n+2b+ |v])/2b and
0 <o < (n+|y])/2b. If apply the spherical transformation for £ with the center y
and the radius r € (0, (s—#)'/2®) in the two integrals over Sy, such for |y|/2b < X < 1
and |[y|/2b<v <1

t
/ dr / (t— ) |ly — €22+ ge <
0 S1

< AT (6 — )21/ f9p ) — |y|)(1 = A) (3.9)
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and

¢
[ ar [s=mly- g erae <
0 S1
< 2Tt (6 — )= D/2 J(9py — 4) (1 — v) (3.10)
If we embed the set Ss into the set
B(y,(s = t)'/* R) ;= {£ € R"; (s =) /** < |ly = &|r» <R, R>0} D Sy

and we shall use the spherical substitution for £ with the center y and radius
r € ((s —t)'/?", R) in the two integrals over Sy, such we get for |y|/2b < 1 < 1 and
[v]/2b <o <1

i
(s =) / ‘”/ (t=7) " lly = &l ™ <
0

Sa
< AT R (e — )@Y/ poh | — 2bp) (1 — ) (3.11)

and
8
[ [s=ne - o e <
t SQ
< 27" LRIl — )19 /(2b0 — |4))(1 — o) (3.12)
From the inequality (3.5) and the estimations (3.7), (3.8), (3.9), (3.10), (3.11) and
(3.12) we can conclude that the operator S is compact. O

The following theorem ensures the existence of solution for problem (2.1)-(2.3)
without the boundedness of nonlinearity f.

THEOREM 3.2. Let the hypotheses (P), (C), (Q), (5°%) for o € (0,1) be satisfied
and g : cl @ — RP be continuous function at cl Q). Let f:cl@ X (—oc,oc)® — RP
be continuous function at cl Q X (—oo,00)", where k is the positive integer given in
the formulation of the problem (2.1)-(2.3). Furthermore

ST, D, pu(t,x)] =0 for (t,x) € dQ, (3.13)

where u € Cﬁ‘(le,Rf’) for 0 < |y| < 2b—1 is a mild solution of the linear
nonhomogenous problem (2.1) with f = 0, (2.2), (2.3). Then nonlinear problem

(2.1)-(2.3) possesses at least one mild solution from the class me(le,R”)A

Proof. The solution u € CmM(le, R?) of the linear problem (2.1) with f =0 (2.2),
(2.3) is a solution of the given nonlinear problem, evidently . O

COROLLARY 3.1. If instead of assumption (8.13) in Theorem 3.2, we suppose
f(t,z,0) =g(t,z) Jor (t,x) € clQ (3.14)
such the statement of this theorem is correct, too. Here 0 = (0,...,0) € R*.
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Assumption (3.14) enables to study problems with strong nonlinearities f, for
example: f(t,xz,u) = g(t,z)u*, a € (0,00), or f(t,z,u)=g(t,z) — e+ 1,k > 0.

4. NONUNIQUENESS EXAMPLES

The following examples ilustrate a nonuniqueness of classical solution of parabolic
or nonparabolic problem (2.1)-(2.3).

ExaMPLE 4.1. Theorem 3.1 can be ilustrated by the initial-boundary value
problem for the equation (2.1) with u = (u1,u2)7,

(¢, Dyu) = (sin(ur]uz|®), arctan(jus [Puy)) "

for |y =0,,8 € (0,1) and g = (0,0)T at clQ with conditions (2.2), (2.3).

It is evident that this problem posseses the trivial solution u(t,z) = (0,0)7 at
cl@). Because nonlinearity f is not locally Lipschitz continuous in cl@ x R? it is
plausible that problem (2.1)-(2.3)is not uniquelly solvable at ¢l@.

EXAMPLE 4.2. Consider the two Neumann type initial - boundary value problem
(parabolic and non - parabolic)

ou d%u

5 = i@—{—f(t,x,u), (t,2) € (0,T) x Q=Q C R? (4.1%)
du du .
u(0,z) = 0, z€Q (4.3%)

(i) If f(t,z,u) = |[u|*, « € (0,1), the given problem has a continuum of the
solutions u, € Ctl’f(le,R) for r € (0,7)

0, if (t,2) € (0,7) x
ur(tv f) =
(1 — @) /=)t — p)l/(=0), if (t,z) € (n,T) x Q

uo(t,z) = (1 — a)/0-2/0-a) and up(t,z) = 0 are solutions of (4.1%)- (4.3*),
too.

(ii) Similary if f(t,2,u) = |u|'/? — au, a > 0 we have a continuum of solutions
of (4.1%)- (4.3%) for r € (0,T)

0, if (t,2) € (0,7) x Q
ur(tvx) =
(1 —exp{—%(t—1)})%, if (t,z) € (n,T) x Q

The functions ug(t,z) = Z5(1 — exp{—at/2})?, ur(t,z) = 0 are solutions of the
given problem, too.

(iii) We obtain an analogical situation for f(t,z,u) = t’|u|® with
a € (0,1) and B > 0. Other nonlinearities f can be taken, too.

(iv) Consider the following initial-boundary value problem for the system of p
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equations
Dw— S ag(t,2)Dhv =h(t,z,v), (t,2) € (0,T) x @ C R™!
1<|k|<2b—1
with the p unknown functions (vy,..., v,) =t v. Here h = (f,0,...,0) : l @ xR —

R? and f is some of the functions given in (i)-(iii) of this example.
We take the conditions

Bj(t,I,Dz)’U ‘chZZ Z bjk(t,I)Dﬁ’U ‘cll“: 0

1<k <7y
forj: (17“47 bp)7 IST] g?b—land
v(0,2) =0forz € Q.

Then there is a continuum of the vector solutions w, € Ctlﬁ‘f(le, R?), where
we(t,2) = (up(t,2). 0, ..., 0) and u, € Ctlj (el Q, R) for r € (0, T) is for example
some of the functions from (i)-(iii) of this example. O

ExXAMPLE 4.3. (i) Consider the initial - boundary value problem for the nonlinear
equation

1/2

au—aQu—{—\F ]u(t )siny d sinz +
ot Ox? 7r HY Sy ey '
0
. 1/2
2 . .
+ f /u(t,y) sin2ydy| sin2ax (4.1%%)
i
0
for (t,z) € (0,T) x (0, %) with the Dirichlet type boundary value condition
u(t,0) = u(t,7) =0, t€(0,T) (4.2*%)
and the initial condition
u(0,z) = 0, z€(0,m) (4.3")

A continuum of solutions belonging to Ctl”j(le,R) of this problem represents
the set of functions

up(t, ) = a,(t)sinz + b, (1) sin 22, (t,z) €l Q
for r € {0,T). Here for r € (0,7)
0, ifte(0,r)

ar(t) =
(1—exp{—(t—7)/2})?,  ifte(r.T)

and
0, if ¢ € (0,7)

be(t) =
L1 —exp{—2(t —7)})?, ifte (r,T)

16
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Further, ag(t) = (1 — exp{-t/2})%, ar(t) = 0 = bp(t),

bo(t) = £ (1 — exp{—2¢})2.
The function a, and b, : (0,T) — R are the solutions of the initial value problems

d

d—i ta=a'? te(0,T), a(0) =0
and

b g — 2 _

7t +4b=|b"/%, t € (0,T), b(0)=0
respectively.

(il) The initial - boundary value problem for the nonlinear equation
. 1/2

8_u_@+\/§/ (t,y)cosyd cosz +
ot Oz? ™ by vy *

0
. 1/2
2
+ \/j /u(t, y)cos2ydy| cos2z,
™
0
(t,z) € (0,T) x (0, ), the mixed conditions
g—z(t,()) =u(t, ) =0, te(0,T)
and the initial condition
u(0,2) = 0, xz€(0,x)
has a continuum solutions of Ct{f(cl @, R) in the form
3
ur(t, ) = cp(t) cos g + e,(t) cos ;, (t,z) €cl@Q

for r € (0, T).
Here the functions ¢, and e, : {0,7) — R satisfy the Cauchy problems for the
ordinary differential equations

L Ze= V2 T =

7 + 1€ le]* 7=, t € (0,T), ¢(0) =0
and

de 9 o 1/2 o

dt+4e_|e| , t€(0,7), e(0)=0

respectively. Both problems have a continuum classical solutions.
(iii) For the fourth order nonlinear differential problem

x 1/2

du d*u \/5 . .
il @jL - /u(t,y)smSydy sin 3z +

0
x 1/2

2
+ \/j /u(t,y) sindydy| sindzx,
T

0
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d%u 2

u(t,0) = u(t,m) = @(t,(]) = @(t,ﬂ') =0,
u(0,z) = 0

we have also continuum solutions belonging to Ct{f(le,R). Tt is given by the
functions u, : I ) = R, r € (0, T), where

ur(t, ) = g-(t) sin 3z + h,(t)sindx, (t,z) €l Q.

The function g,, by : (0, T) — R for » € (0, T) are classical solutions of the
equations

dg dh
= — — 156h = |h|'/2, t € (0,T), h(0) =0.
dt dt | | K ( K >7 ( )

(iv) According to the previous examples one can easily construct initial - boun-
dary value problems for systems of evolutions equations with the property of the

non-uniqueuness. O

81g = |g|*/?, t € (0,T), g(0) =0,
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