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Generalized contact transformations
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Abstract

Point transformations can be applied to any system of differential equations. On the other hand,
classical contact transformations concern only the particular case of one dependent variable. The
article is devoted to certain new contact—like transformations which can be applied to several
dependent variables. They are again defined in terms of appropriate contact conditions which
are expressed by the intersection of wave fronts. The "reverse waves” with the variables and
the parameters interchanged provide the inverse mapping. As a result, the ancient dream of Lie
becomes true: the existence of the higher—order contact transformations is established.
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All investigations of cquivalences and symmetries of differential equations arc
as a rule carried out in a finite order jet space: a certain finite order jet space
is transformed into itself. In fact this is a short cut of the problem. There exist
invertible mappings which do not preseve the hierarchy of finite order jet spaces
and they are completely neglected in this approach. We will mention several in-
structive examples. They are analogous to the classical contact transformations,
for instance a beautiful gcometrical interpretation of the results in terms of wave
fronts is possible and the inversion can be easily found by using the ”reverse waves”.

1. ONE INDEPENDENT VARIABLE

We are interested in (local) automorphisms of the family of C™ smooth curves
in R™*1 (m > 1). Tn explicit terms, we investigate (local) C°°—smooth invertible
transformations given by the cquations

T =F(z,w),...,w, ... ws,.. ., wT),
w) = Fy(z,wl, -, wly . wh, ., wE) (1)

(wi = d"w'/da", wl = *w’ /dz?)
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between two families

w'=wi(z) (i=1,...,m), @ =w/Z) (G=1,....m) (2)

of C®—smooth curves. (The definition domains are not specified. It would be
better to speak of the germs of C*—smooth curves.) We suppose

0 ;0
XF#0 (X:a_x+zw§+la_wg) (3)

in order to ensure the change of the independent variable. Then formulae (1) can
be completed by the recurrences

u‘;ﬁH = Fg+1(x,w(1),...,w6",...,wé_i_s_i_l,...,wg"_i_s_i_l) = % 4)
for the higher—order derivatives. Denoting by
wi = dwi —widr, @ = dw! — u’)g_i_ldi
the contact forms, equation (4) is equivalent to the congruence
@l =dF! —F/dF =0  (mod all forms w?), (5)

by easy verification.
The inversion of (1, 4) is expressed by certain formulae

where the recurrences
i XGi - 0 ;0
Grn1 = 54 (X'=ot Zws+lﬁ) (7)
are automatically satisfied. (Hint: Formulae (6) provide a certain development
i i i = j j 9y
Wy = dGr - Gr+1dG = gdz + Zggwg (gg = ﬁ)
ow?
for every form wi. Here dt = XFdz + Y. 9F/6w! - w! may be substituted and
assuming (4), hence (5), we obtain ¢XF = 0 hence g = 0 identically. Tt follows
that wi 2 0 (mod all forms @J) which is equivalent to (7).)

In general, the inversion (6) of the infinite system (1, 4) cannot be easily deter-
mined and the invertibility criterion is represented by a lengthy algorithm. However,
we will find a large class of transformations (1, 4) where the inversions (6) follow
by a formal interchange of variables with bars and without bars in the definition
formulae.

2. A TECHNICAL NOTE

We will use two infinite series of (infinite order jet) coordinates

zowl (i=1,...,m;r=0,1,...), 2@ G=1,....m;s=0,1,...) (8
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and consider C°-smooth functions

of a finite number of variables (8). Denoting

_ af af
Df =4 + Zwr+la P Df= 3z Z“’iu@
then the identities

df = Dfdzx +Za Zw '+ Dfdz +Z f,]

9)

hold true. Here (8) are regarded as independent variables.

On the contrary, let us suppose the interrelations (1, 4) or, equivalently, inter-
relations (6) among variables (8). Then we shall use another notation, namely (3,
4, 7). Tn more detail, assuming (1, 4) then f may be regarded as a function of
variables (8),

flx, ... wh, o F L FY ) = Fla, . wk L)

T

and we denote X f = DF. (Roughly: Applying the operator X means substitution
(1, 4) followed by the operator 1. Alternatively, in the reverse order:

X means D + DF - D followed by substitution (1,4).

This can be easily proved for every coordinate function (8).) Fquivalently, assuming
(6), then f may be regarded as a function of variables (8,),

G, .G E L wl ) = FE,. . wl L)

and we denote X f = DF. Tf f does not depend on variables Z,w] (on z,w!) then
formally Df = X f (Df = X f, respectively) can be identified.

Let O (Q) denotes the module of all finite sums >~ aiwi (3 alwl, respectively) of
contact forms where the coefficients are arbitrary C°° smooth functions of variables
(8). Then congruence (5) reads @ € Q. Hence €2 C ) in virtue of the prolonga-
tion formulae (4). Analogously 2 C € in accordance with (7) whence ) = Q is
a consequence of the invertibility.

Assuming (1), then clearly dz = dF = X Fdz (mod Q) as follows from (9) in the
particular case f = F. Therefore X F' # 0 if and only if dz = dF & €.

We turn to proper topic.

3. CONTACT TRANSFORMATIONS IN THE PLANE

The classical contact transformations arise if m = S = R = 1 is supposed in Section
1. (In more detail: the assumption m = 1 and the invertibility 2 = Q together
imply S = R = 1 in equations (1, 6) with » = 0 and moreover S = R = 0 in
equations (4, 6) with s > 0,7 > 0. We shall not need this fact, therefore a legthy
direct proof may be omitted here.) Then we simplify the notation into
Yy = w JYs —wl . —wi,ﬁ‘ wl

by changing the letters and omitting the superscripts. Let us recall some (well
known) results with the use a somewhat strange method. First and foremost, our
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aim is to obtain the explicit formulae both for the contact transformation and for
its inversion by a slight adaptation of classical reasonings.
Given a C'°“—smooth function f of four variables, we introduce the equations
f($7y07j7g0) :07 Df(xay(hyhjvgﬂ):()- (]0)

Assuming

[
det ((Df)m (Df)yo> #0, (m

the implicit function theorem can be applied to (10) and we obtain a (local) solution

z=F(z,y0,y1), Yo = Folz,y0,y1)- (12)
(More precisely: if the system (10) has at least one solution then the implicit
function theorem can be applied and the definition domains are large enough. We
shall omit analogous remark in all examples to follow, for brevity.)
Assuming moreover Of [Oyq # 0, it follows that d7 = dF ¢ Q hence XF # 0.
(Hint. Much weaker condition is in fact sufficient. Calculate dz, 79 by using the
linear equations

0=df =Dfdz + fyono + DfdZ + fz70,
0=dDf = D?fdx + (Df)yono + (Df)ym + DD fdz + (D f) om0

with the nonvanishing determinant

Y TR U NP (S PR
s=as( p5r o, ) = (wh, Bh. ) O
We obtain

*u_l Df fﬂo __l "'+y1fy0 f.TIU
dz = Adet <D2f (Df)a ) dz = Adet (____{_nyyU (D) ) dx
modulo Q. Therefore inequalities (11) and J9f/dyo # 0 ensure d7 ¢ Q. We shall
omit the analogous calculation in all examples to follow, for brevity.) Then the
prolongation
XFy
XF
makes good sense. In reality variable y,y1 does not occur here if s > 1 (so the
hierarchy of finite order jet spaces is preserved and we indeed have the classical
contact transformation). This may be proved as follows.

Employing (10) and (9), we have

0= df = flan + Dfdi_{_fﬂnﬁo-

Assuming moreover (13), then congruence (5) ensures the inclusion 7y € €, hence
Dfdz = DfdF € Q. However dF & Q implies the identity

gs:Fs(mvav'-'vys+1)7 Fs+1 = (13)

0=Df=fo+5fp (14)
which alternatively reads as better prolongation formula
_ af/oz
= — = F ; .
h e 1(2,Y0,91)
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Variables (12) are substituted into the middle term here and 9f /975y # 0 is sup-
posed. From this particular result, the desired formulae s = Fy(x, 50, - - -, ys) easily
follow for every s > 1 with the use of recurrences (4).

4. SUMMARY

PROPOSITION 4.1. Assuming (11) and 8f/8yo - 8f/Byo # 0, equations (10) de-
termine the transformation (12,13) and then the prolongation formula (14) holds
true. It follows that the role of x,y, and T,4,; can be interchanged. Assuming
moreover

det ( . (l{?(iyn) 70

equations f =0, D f = 0 provide the inverse transformation

m:G(j7ﬂ07ﬂ1)7 yOZGO(j',ﬂOalﬁ)

and then (102) may be interpreted as a mere prolongation formula.

5. COMPLEMENTS

We state a few results without proofs in order to accentuate the distinction between
operators D and X. Operators X are not frequently appearing in this article, how-
ever, they are useful in many respects.

Assuming interrelations (1, 4) among variables x,y%,Z, !, many identities can
be derived by using the Lie derivative Lx. For instance, (14) holds true whence
also

LxDf=XDf=0,L%Df=X?Df=0,...
which provides the alternative prolongation recurrences

0=(D+XF-D)Df =DDf+XF -D?f=---+ XF- 2Ly,
0=(D+XF -D)>)Df =D*Df +---+ XF- 5Ly,

in terms of functions F' and f. Analogously, identities df = 0,Lxdf = 0,...
provide important recurrences for the forms @] if the equations Lxw, = w/ .

Lxwl=XF-w! | are applied.

6. DIGRESSION: THE COMMON APPROACH

For the convenience of reader, we compare the method of Section 3 with the common
traditional approach in order to clarify some subtle distinctions. The distinctions
are important, they enable us to discover the subsequent generalizations of the
classical concepts.

Tn the common approach, a contact transformation

d dy
z=F(z,yy), y=G,yy). vy =H@yy) = é, y' = é)
of curves in R? is defined by the identity
Ady — 7'dx) = MdG — HAF) = u(dy — y'dx) (15)
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where Ay # 0. One can then obtain the unpleasant system
G,—-HF,+y(G,—HF,))=0, G, =HEF,

for the functions F, G, H. Fortunately, the following easier method was invented.
Assume a functional dependence f(z,y,Z.y) = f(z.y, F,@) = 0 and identify the
equation

df = fodz + fydy + fadz + fzdy =0
with identity (15). It follows that A = 8f /9y, u = —9f/Jy whence (15) reads
Jo(dy —¢'dz) + [, (dy —y'dz) = 0
and moreover

fo+y'fy=0, fa+yf;=0. (16)

So we have obtained all crucial formulae of Section 3, in particular formulae (10,
14), however, in quite other arrangement.

In more detail, the distinctions are as follows. In the common method, the
invariance property (15) of the Pfaffian equation dy — y'dx = 0 is postulated in
order to obtain equations (16). Tn Section 3, we have postulated f = Df = 0 in
order to directly obtain the prolongation Df = 0. This is a slight but important
rearrangement: in all examples of the generalized contact transformations to follow,
there does not exist a sufficiently large supply of invariant Pfaffian equations since
the hierarchy of the finite order jet spaces is destroyed. The common approach
fails, however, the method of Section 3 based only on the inclusion Q C Q can be
closely simulated.

7. THREE-DIMENSIONAL CASE

We will determine the generalized contact transformations of curves in R?, hence
m = 2 is supposed in formulae of Section 1. Let us simplify the notation as

2

. | a2 . | —
Yr = W, 2 _“)ranr—wr:(:?”_wr

Ty T

and analogously with bars. Closely following the method of Section 3, completely
new invertible second—order contact transformations of curves in R3 will be ob-
tained.

Given a function f of six variables, we introduce the equations

f(I:yO7ZO:i:y_0720) - 0:
Df($7y0720:y17z1:i:gowgo) :O: (17)
D2 f(x,90, 20, Y1, 21, Y2, 72, ¥, Yo, Z0) = 0.
Assuming
f.i f@n fin
det | (Df)e (Df)ge (Df)z | 70, (18)

(D*f)z (D*fgo (D*f)z
the implicit function proposition ensures the solution

= F(m7y07207y17z17y27z?)7
go = Fy (.90, 20, Y1, 21, Y2, 22), (19)
Zn :F(]Q(.’If,y(],Z(],yl,Zl,yQ,ZQ)-
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Assuming moreover either 8f/3yg # 0 or 8f/029 # 0, it may be proved that
dZ = dF & Q2 hence X F # 0. The prolongation

gs = Fsl(xaymZOa R 7ys+27zs+2)7 25 = F52($7y07 20y -5 Ys+2, Zs+2) (20)

arising from formulae (4) makes good sense and we have Q C Q. In reality the
variables ysy2, Zs+2 do not occur here and the proof is as follows.

Assuming (17, 20), then the identities 0 = df,0 = dDf imply the inclusions
Dfdz € Q,DDfdz € Q quite analogously as in Section 3. So we have

_ of _of _ Of _ oDf _oDf _o8Df
0 f a7 + 1 B0 +Z1 PR 0 f B + 1 B + Z 97,
and if the inequality
i e )
det v N 0 21
¢ ((Df)ﬂo (Df)fn 7é ( )

holds true, then better prolongation formulae

= 1 = _ 2
Y1 = Fl ($7y07Z07y17Z17y2722)7 21 = F1 ($7y07Z07y17Z17y2722)

follow. Moreover the identity Df = 0 implies dDf = 0 whence D?fdz € Q and
therefore D2 f = 0 by analogous arguments as above.

It should be noted that variables ysy1,2s41 cannot be deleted from equations
(20). It follows that the finite order jet spaces are destroyed, however, regardless
of this poor prolongation result, we hawve moreover proved the identities Df = 0,
D2f =0 as a consequence of (17).

8. SUMMARY
PROPOSITION 8.1. Assuming (18) and either 8f/8yo # 0 or 8f [0z # 0, equa-

tions (17) determine the generalized contact transformation (19,20) of curves in E?
satisfying moreover the identities Df = D?f = 0. Therefore the simple interchange
of variables with bars and without bars provides the inverse transformation (defined
by f = Df = D2f = 0) if either Of /0yo # 0 or 8f /0%y # 0 and a certain Jacobian
(a counterpart to (18)) is nonvanishing.

A beautiful geometrical sense of the result is worth mentioning. Equation
f(*7 j7 g07 ZU) =0
represents a wave W (x) associated to the point * = (x,99,20) € R* Then the
equation Df = 0 provides the ”intersection” with the infinitesimally close wave
W (* + €), the line of foci, and eventually the equation D2f = 0 determines the
"intersection” of three infinitesimally close waves, the focus @ = Q(x).
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It the point * moves along a curve, then the multiple focus Q(*) runs over the
transformed curve and the “reverse wave” with the variables interchanged con-
versely determines the point * in terms of ¢)(*).

Analogous interpretations of all contact like transformations to follow are possi-
ble, as well.

9. TWO FURTHER GENERALIZATIONS

(1) More variables. Given a C™ smooth function f of 2(m+1) variables (m > 3),
we introduce the equations

1 (| 7Yy —
f(xzw(]:'--vw07$:w07 7w0)707

1 m 1 m 5 .l 7MYy —
Df(z,wg,...,wi wy,...,w], &, wg,..., 08 ) =0,

D™ f(x,wd, . wd, o wk o wT E g, i) =0

T=F(r,wy,...,w™), w)=F(r,wy,...,w™) (G=1,...,m)
if the Jacobian (not written here) is nonvanishing. Assuming moreover either func-

tion 8f /Owd (i = 1,...,m) nonvanishing, then X F' # 0 and we may introduce the
prolongation (4). However, also the identities

Df:DDf:‘“:DDm71f:D?f:DQDf:...:Dmf:(]

are valid after this prolongation. It follows that the inverse transformation is de-
termined by the implicit system f=Df = ...= D" f =0 if the relevant Jacobian
s nonvanishing.

(1) Lower dimensional wave. Given functions f and g, each dependent on eight
variables, we introduce the equations

1 S e S N 1,02 08 = -1 -9 3y
f($7w07w07wﬂyxyw07w07w0)*07 g(x7w07w0:w0:$7w0:w0:w0)*07

1 3 4 =1 =2 -3\ 1 3 4 -1 -9 3y
Df(z,wy,...,w,z,wy,ws,wy) =0, Dg(z,wy, ..., wi,z,wy, ws, wy) = 0.

Tf the implicit function proposition can be applied, we obtain the (local) solution
F=F(x,w),...,w}), ﬁ)g = Fg(m,wa, Lowd) (5=1,2,3).
Assuming moreover X F' # 0, prolongation (4) makes good sense whence ) C 2.

(One can check that the condition

ranlk af Jowh Of |ows Bf |ow
a Og/ow, Og/owk dg/owd

is sufficient.) Then, employing (9) applied to the identities df = 0, dg = 0, it

follows that the equations Df = 0, Dg = 0 are satisfied, too. So we obtain the
inverse transformation

r=G(Z,®),...,0), wh=GHE,w,...,ws) (i=1,2,3)
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implicitly defined by the equations f = 0,9 = 0,Df = 0,Dg = 0 if the relevant
Jacobian is nonvanishing.

Unlike all previous examples, two equations Df =0, Dg = 0 do not completely
determine the three prolongation functions Fil, F2, F? here but it does not matter
as the invertibility is concerned.

10. TWO INDEPENDENT VARIABLES

The above reasonings can be carried over the multidimensional case of several in-
dependent variables, however, then the technical machinery obscures the simple
idea. Therefore, for the convenience of exposition, we restrict ourselves to the quite
instructive case of two independent variables.

We are interested in the invertible transformations, determined by the equations

ik:F,k(IRIQv'“vwf‘s:“-) (k=1.2), (22)
’12)60 = F()]U(I1:$2:"‘7w;‘si“‘) (] = ]7"'7m)7

between two families
w'=wi(z"2?) (=1,...,m), w =w(x,7%) (j=1,...,m)

of C™ smooth (germs of) two dimensional surfaces. In order to delete some in-
dices, we use alternative notation z = 2!,y = 22 of independent variables and
of derivatives wi, = 8" *w!/9x"dy* here (and analogously for the variables with
bars). Denoting moreover

5, ; 5, 3, . B
X=X1=—= i1 se——: Y =Xo=— ;o1 T
' on * Z w'“‘”@w;s ' > by - Zw"bﬂ ow

and assuming

det(Xp FY=XF' . YF2 - XF>.YF!' £, (23)
the prolongation
wl = FI (y,...,wi,..) (G=1,...,m u,u=0,1,...) (24)
is determined by the implicit recurrences
XFi, =Fl XF' +F XF, YF, =F_ YF +F VF. (25
They are equivalent to the inclusion
wh,=dF), — Fl, dF' - F)  dF?€qQ, (26)

where 2 is the module generated by the contact forms
why = duwl, — iy de — wf . dy.

Moreover inequality (23) means that differentials dz = dF', dy = dF? are linearly
independent modulo . The inversion of equations (22, 24) is given by certain

formulae
=GR 22wl ), wi, =G a2 wl ) (27)

where the obvious recurrences are automatically satisfied.
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11. TWO EXAMPLES OF NEW INVERTIBLE TRANSFORMATIONS

The classical contact transformations appear if m=1 and functions F!, F?, Fl,,
F},, F3; are independent of variables w!, (r + s > 1). We shall not dlS(‘,llSS this
well known case here and pass to the new higher order generalizations.

(t) Several dependent variables. Given a C°—smooth function f of twelve vari-
ables, let us introduce the equations

f($7y7w(1101 s 7w30:i:g7w(1](]: s 71[}30) = 0:
(28)
Dif =0, Dof =0, DYf =0, DiD>f =0, Dif = 0.
Here Dy, D> are aperators formally defined as X7, X5 above, hence
af f _
df =Dy fdr + Dofdy + Y W“ + Dy fdz+ Dafdy +> ot (29)

analogously to (9), with obvious operators Dy, Dy. (Recall Section 2: operators
Dy, Dy, are applied if the total family of dashed and undashed letters denotes inde-
pendent variables. Otherwise, if certain interrelations as (22, 23, 26) are assumed,
we use operators X and Xj.) Assuming

f? f@ fwm e fwm
(le)? (le)@ (Dl f)wm (Dl f)wm
det (DQf)7 (DQf)@ (DQ f)wm e (DQf)wm 76 07 (30)

(D2f)s (D2f)y (D2 s - (D2f)os,

implicit function proposition can be applied and we obtain a (local) solution

ik:F’“(x,y,wao,...,wao, Wy W) (k=1,2), 11
1 F; 1 4 - (31)
5o = Fl (2, y, w0, - - wWho, - -+ Whes - wiy) (G=1,...,4).
Assuming moreover either of the values 8f /0w, (i = 1,...,4) nonvanishing, then

differentials dZ = dF! and dg = dF? are linearly independent modulo Q, therefore
(23) holds true and we may introduce the prolongation (24).
Let us turn to the inversion. Assuming (31), then the identities (28) are satisfied.
Tn particular identities f = D1 f = Daof = 0 imply
5f
Hw

w00+n fdz + Dafdg+> 7f @ly=0

Yoo

if (29) is employed. However wi, € Q and it follows that Dy f = Do f = 0 identically
since dz, dy are linearly independent modulo €.

The same reasonings can be successively applied to the functions Dy f, Do f, Dy f,
D, f instead of f. It follows that

DiDif =Dy Dof = DpDif = DiDof =0 (k=1,2)

identically. Therefore the inversion appears by the interchange of variables and it
is determined by the implicit equations

f: le = DQf = D12f: D1D2f = D22f:(]
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if the relevant Jacobian is nonvanishing.

(1) Lower dimensional wave. Given three C®—smooth functions f, g, h of ten
: _ O S e N S : :
variables () = (z,y, Wy, Wig, Wap» T, T, Wogs Who» Wag ), We introduce the equations

f()=9()=h(-)=0, Dif Dag=Dig-Daof, (32)
Dif-Doh= Dih-Dyf, Dig- Doh = Dih- Dag.

(Assuming moreover Dy f # 0 or Do f # 0, the last equation may be omitted.) The

implicit function proposition ensures a (local) solution
ik - F’,k($7y7w(1)07“‘7w81) (k:172)7 (%%)
wéOZFéO(I7y7w(1)Ov"'7w81) (j:]7273)

if the Jacobian (not written here) is nonvanishing. One can also check certain
(rather clumsy) conditions which ensure that differentials dz = dF"' and dy = dF?
are linearly independent. Then (23) holds true and the prolongation (24) makes
goaod sense.

Let us turn to the inversion problem. Consider identity (29) together with the
analogous development

) (34)

rs

5q . _ _
dg = Digdz + Dogdy + Y ﬁwﬁs + Digdz + Dagdy + Y

99
i Hwi.
of function g. Assuming moreover (33), then (32) holds frue, in particular
0=df=dg, Dif-Dsg=Dig-Dsf.
Tt follows that we have a certain nontrivial relations
AD f=uDyg, ADof = uDag
and therefore

0= Adf + pudg = XDy fdz + Do fdy) + pu(D1gdz + Dogdy)

modulo the contact forms. Since the differentials dz, dy are assumed linearly inde-
pendent and (23) is satisfied, clearly

ADif =puDyg, ADsf = puDsg

whence Dy f - Dog = D1g- Ds f. Remaining identities (32) for the operators D; can
be derived, as well.

Altogether taken, inversion (27) of the transformation (33) is determined by the
implicit equations

f()=9()=h)=0, Dif-Dyg=Dig-Dsf, (35)
Dif-Doh=Dih-Dyf, Dig-Doh=Dih-Dsyg .

if the relevant Jacobian is nonvanishing.

12.  CONCLUDING COMMENTS

Immense literature on classical contact structures on manifolds need not be referred
to. Let us just remind the primary expositions [2; 4; 7] with a nostalgia. On this
occasion, we mention aother generalized transformations which can be reasonably
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applied only to very special classes of differential equations. The ancient Laplace
substitution W = w; + bw in the theory of hyperbolic equations wy, + aw, + bw, +
cw = M [5] serve as a typical example and a prototype of differential substitutions
w = g(x,w, Wy, ..., W, ;) in the theory of evolutional and nonlinear hyperbolic
equations [10; 11; 12] with one unknown function w of two independent variables.
Also the Lie-Bécklund correspondences [1] and Darboux transformations [8] with
deep applications on solitons [9] are worth mentioning. Although the independent
variables are always preserved in these examples, a general theory including all such
transformations is still lacking and the invertibility in the common sense fails since
such transformations are not applied to the total jet spaces.

We intentionally use only the most elementary tools of algorithmical nature in our
article since they provide transparent and explicit results. Alternative coordinate—
free exposition would be rather lengthy. (See, e.g., [6] pages 146 -156 devoted to
analogous theory of canonical transformations.) Our generalized contact transfor-
mations can be easily inverted. This is not the case for the general mappings (1,
4), however, an universal algorithm for explicit determination of all such invertible
transformations is already available [3].

We deal with quite simple examples in order to demonstrate our approach clearly.
Tt is a matter of a routine to analyze more general waves

foa,wl, . el g @, e =0 (k=1,..., K:1<K<m-1)

of dimension m — K and even the multi-dimensional case. Assuming m = m, one
can obtain analogous results as above. Assuming m # m, then our method provides
explicitly solvable differential equations, examples to the Monge problem [13].

For instance, the wave f(z,90,%,¥0,20) = 0 leads to the implicit system f =
Df = D%f =0 with a certain solution

T =F(z,90, 91, %), Jo = Fo (2, 90,51,42), Z0 = F§ (2, 90,41, ¥2)- (36)
Then the inversion
& = G(Z.90, 51, 20, 21), Yo = Go(T,Fo.91. %0, 21)
is determined by the implicit system f = Df = 0 with the compatibility condition
D? f (2, y0. 2. §o, 91 Yo, 20, 21, 22) = 0 (37)

where GG, G} should be inserted for x,yg. Tt follows that formulae (36) provide
explicit solution for the underdetermined differential equation (37) with two un-
known functions gy and Zg. Analogously the multi-dimensional case provides some
explicitly solvable examples of partial differential equations. The classical theory
of complete integral [4] is trivially involved as a very particular subcase.

Tt is to be noted that T.ie together with Bicklund were also interested in the
existence of the higher—order contact transformations. They did not succeed, con-
sult the remarkable history and extensive comments to the relevant Lie—Bicklund
nonexistence proposition in [1].

13. APPENDIX

For the convenience of reader, let us mention the Lie-Bdcklund proposition since it
is not easily available in literature. In order to simplify the exposition, we shall deal
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only with the case of one independent variable. Then the multidimensional case
causes only technical difficulties with clumsy multiindices and formaly extensive
systems of equations.

So, continuing the idea of Section 1, let us consider transformation (1, 4) of curves
(2) of the following special kind:

j:F(m Wy, W wh, W), (39)
wl = Fi(z,wg,....,w§, ..., we, .., wd), (1=1 ,m; s =0, S)
(of a certain order S, S > 0) and therefore
wfs+s :Fé+s(m,71)é,...,wg",....,71)}3_,_5,...,71)75"‘_,_5) (39)

(j=1,....m;s =0,1,...) for the higher order derivatives, by prolongation. Tn

other words, we suppose that all (S + s) order jet spaces are transformed into
themselves.

The Lie-Bdcklund proposition reads: If (38) is an invertible system then we either
deal with the prolonged point transformation (therefore S = 0 may be supposed) or
m = 1 and we have the classical prolonged contact transformation.

One can easily see that if the system (38) is invertible by certain formulae

r=GE,wh, .. WY, s, W),
i

; c = = . 40
wl = GHz,wh,. .., W, ..., W5, ..., 0%), (j=1,....m; s<S) (40)

then the infinite system (38, 39) can be inverted by a mere prolongation of formulae
(40). Conversely, if the infinite system (38, 39) is invertible, then the finite part
(38) is separately invertible, too. We therefore deal with the same invertibility as
in the sense of Section 1.

We shall systematically use the bars in order to denote the pull back (of functions
and differential forms) with respect to transformation (38, 39).

Forevery I =0,1,..., let €; C Q be the submodule of all contact forms

w:Zaiwi :Zaﬁ.(dwf,—wf,+1dx) (i=1,...,m;r <l

with the generators w! (r <) of the order at most I. Analogously, let Q; C Q be
the submodule of all forms

D obiwl = bi(dF; - Fl dF) (i=1,...,m;r <),

Then (38) clearly implies Qg C Q. Assume S > 1, w € Q5_;. Then dw =2 0 (mod
Qs) hence dw = 0 (mod ) and consequently dw =2 0 (mod Qg). However, this im-
plies @ € Qg (easy direct proof) and the inclusion Qg C Qg follows. Contin-
uing, we obtain even the whole series of the inclusions Qg_» C Qg_o....,Qy C Qg
for the transformation (38). ‘

Passing to the main part of the proof, the last inclusion means that @) € Qg for
all forms wj € Q. Explicitly,

Wy ; ; o . OF}  OF
@) =dF — F{dF = ZaZwO (al = (‘3w% — Fy i

), (41)
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R OF
aO_F,a =0 (r>0). (42)

S, Vowi

Omitting for a moment the identities (42), we will need the congruence

dis] = da A Z afwi (mod Q) (43)

which easily follows from (41). On the other hand, formula (41) also implies the
congruence

12

(D{ % Z afwi (mod Q).
(Hint. Employing X |wi =0, Q C Q, dz = X Fdx (mod Q), we have

X|da! = X |(dz Awl) = XF -l
but alternatively X |da = X |d 3" alw? whence even the equality

XF-(D{ = ZXa'Z -wé—{—ZaZwi
can be obtained.) So we have another formula

daf =dx Awd = (dz+ ) bfwf) A alw] (mod Q) (44)

for the exterior differential where the expansion

_ 1 9F
dz = XF-(dz+ ) blwf)  (bF = <F B

was inserted.

Assume m = 1 and aj # 0. Then (43, 44) imply b, = 0 (r > 1), hence 8F/dw, =
0 (r > 1). Moreover £y C Qy and therefore

dF) = dw} =@} +w)dF 2 @ +wl  XFdr 20 (mod dz, Q)

for s = 0,1. Altogether taken, functions F, F, F} do not depend on variables w}
(r > 1) and we have the classical contact transformation.

Assume m > 1 and
rank (a;) > 2. (45)
Then (43, 44) imply
=0 (r>1), Zb’fwf /\Za?wi =0.

The last equality means that the forms 3_ b¥wf, S~ alwi are proportional for every
i=1,...,m, therefore b = 0 identically by virtue of (45). Applying moreover the
inclusion Qq C €1y, we obtain the congruences

dF,dF!, dF{ =0 (mod dz, Q)
for every j = 1,...,m and we have the (prolonged) point transformation.

The invertibility assumption was not yet mentioned.
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Tn order to obtain the above T.ie-Backlund result, we still have to prove that the
invertibility of system (38) implies aj # 0 for the case m = 1 and the condition
(45) for the case m > 1.

Assuming the invertibility of (38), then the Jacobian is nonvanishing:

OF[/0x OF/Ow} ... OF/owy ... OF/ow!
OF}|0x OF3 0w} ... OF /0wy ... OF)/ow!

det | OFf/0x OF"/ow) ... OFF Jowd ... OF[ow: ... | #0.
OF!/0x OFI[ow} ... OF!|owy ... OF!/0w!
The entries F/dx,dF] /Ox of the first column can be replaced by the functions

X F,XFJ, respectively. Then identities (41, 42) with F/ = XFJ//XF may be
applied to the first m + 1 rows and we obtain the condition

XF OF/ow} ... OF[owy ... OF/ow!
0 a e al, ) 0
det 0 ai’ o apm ... 0 .| #0.

XF] OF][0w} ... OF][dwy ... OF][0w] ...

Tt follows that det(aj.) # () which concludes the proof.
Tn fact we have obtained better version of the Tie—Béacklund result since the
condition (45) is much weaker that the invertibility assumption if m > 2.
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