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Confidence interval for the Gasser-Miiller
estimator

JITKA POMENKOVA

Abstract

Nonparametric estimates, where kernel smoothing belongs, provide one possible way to find and
describe structure in data. The idea of the kernel smoothing can be applied to a simple fixed design
regression model and a random design regression model. This article is focused on confidence
interval for the kernel estimator with using special type of estimator, the Gasser-Miiller one,
for fixed design regression model. At the end of this article figures for illustration of described
confidence interval on real data are attached.
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1. INTRODUCTION

Nonparametric estimates are one group of method suitable for trend modelling.
Kernel smoothing, belonging to this group, produce more flexible estimates than
the parametric methods and parametric estimate. They also do not require the
knowledge of the distribution data file set. Thus, resultant estimate is free of in-
fluence of the distribution type and errors, which can have negative impact in the
case of hypothesis testing.

Nonparametric method can be applied on data files with missing values. Tt
is possible, using kernel smoothing, estimate missing values or construct estimates
in selected point using whole data file. Also it is possible to construct estimate of
the trend derivation, estimate of the break point (increase, decrease). Estimation
of confidence interval construction is very often important from analyst point of
view.

Convolution type of kernel estimates, Gasser-Miiller estimator, gives possi-
bility to easily construct estimate of the function as well as estimate of derivation
of the function. It can be applied to a simple fixed design model and a random
design regression model.

This article is focused on confidence interval for the kernel estimator with
using special type of estimator, the Gasser-Miiller one, for fixed design regression
model. The aim of this paper is derivation of the formula for construction the
Gasser-Miiller estimator confidence interval and its usage in case of interpretation.
The confidence interval determines area where regression model proceed with given
probability and provides for better interpretation of the found regression model.
For specification results, given by using the Gasser-Miiller estimate and by its con-
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fidence interval, the study is completed by an estimate of the first derivation of
trend function and its confidence interval. All results are compared. At the end
of this article figures for illustration of described confidence interval on real data
are attached. Real data set consists of January average temperatures measured in
Basel 1755 - 1855.

2. KERNEL SMOOTHING

Let (z;,Y;)™ . n € N be asequence of observations (z,Y), where z € R and
Y is real or simulated measurement. Tf the values of exogenous variables x are not
randomly choosen, we talk about a fixed design regression model. The dependency
of value Y on value # can be described by the regression function in the form

K:m(T7)+F77 7:1’[7, (1)

where m is an unknown regression function, z; € [0,1] is a point of plan, Y; is
an observation E(e;) =0 i=1,...,n, D(g) =0>>0 i=1,....,n hold. The

values z;,7 = 1,...,n can be described by non-negative integrable function f

+oc T )
/f(I)d$:1:, /f(x)dmzlilz, i=1,...n

n—1

Definition 2.1. Let v,k be non-negative integers, 0 < v < k. Let K €Lip[—1,1],
support (K) = [—1,1]. Let the following moment conditions be satisfied
- 0 0<j<kjtv
/ Y K(x)de =< (—1)"v! j=v , (2)
! B J=k
Then the function K is called kernel. If B, # 0 we say that K is kernel of order
(v, k) and write K € S, 1.

Definition 2.2. Let v,k be non-negative integers, 0 < v < k, u > 1.Function
K € CH[—1,1], support (K) = [—1,1], which satisfied conditions

) KO(-1)=KW1) =0 j=0,...,u—1

0 0<j<kjtv
(44) f; P K(x)dr =< (=1)"v! j=v . (3)
Pe#0 j=k

is called kernel of smothness p, order (v, k) and write S,’fk

The general formula for a kernel estimator can take the following form
m(z) =Y Wiz, b)Y,
i—1

where W;(x,h) are weight functions depending on h,i,2 and K, h = h(n) is a

positive constant and K is a kernel. Denote Kjp(-) = %K (F)
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3. GASSER-MULLER ESTIMATOR

Let us have a fixed design regression model described in Section 1. Let us
consider the Gasser-Miiller estimator

T

T 1 84 r —
) =3 Vi [ K<Thu> =3 YiWila,h). @
i—1 S8 1 =1

The points of plan z;, ¢ = 1,...,n are ordered according to the size and points
s;5, 1=0,...,n,5 =08, =1, 5, = % hold. Thus the weight functions
Sij = Wi(xj,h), i,j = 1,...,n in a point of plan z;, with a bandwith h for an
estimator of function 7(z) take the form

1 8 T;—u
Wiz, h) = o /s 1K< b )du. (3)

For the detail see [7], [5].

THEOREM 3.1. Let us consider the fixed design regression model and let following
conditions be satisfied
1. me C*(0,1]),ke N
2. K e M,,’k
3. limyoeoh =0 alim,_ o nh?T' =
Then for every x € (0,1) the estimator

1 < 1 < % r—u
2 () = W - .
m\(x) = s ;:1 YiWi(x,h) = s ;:1 Y; /bzl K ( 5 )du (6)

is a consistent estimator of m")(x). The following formula holds for the variance
of this estimation

2
~ (v a y
var(m ) () = W(CK +0(1)), (7)
where
1
J
and bias can be expressed
En ) (x) = m(x) = ¥ "m®) () Bk + O([nh] ") + o(h¥ "), 9)
where
_ kB A :
Bio= (08 = [ K (10)
! J

PROOF. For the proof see [6]. O

COROLLARY 3.2. Let Theorem 3.1 hold. Thus
mW) (z) — B (z)

Vvar m)(x)

— N(0,1).
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PROOF. The proof arise from the Theorem 3.1. For the detail you can see [4]. O

COROLLARY 3.3. Let Theorem 3.1 hold and let bias be expresed in the form (9).
Provided that lim,_,o. nh***" =d? > 0 for some d > 0,

(nh2”+1)1/2 ) (m(uj (z) — m® (x)) — N(dm(k)(f) BkngC;{). (11)

PRrOOF. The proof is straightforward consequence of the Theorem 3.1. and Co-
rollary 3.2.. [

Denote u,, a number (a gquantil) oversteped with probability « by standard
normal distributed random variable, ie. 1 — ®(u,) = «. We are searching for
interval which overstep an estimate m(*) (z) with probability close to 1 — . This
interval has been called confidence interval.

THEORFM 3.4. Let Theorem 3.1, Corollary 3.2. and Corollary 3.3. hold. Thus
confidence interval for the Gasser-Miiller estimate of the function m®) (z;h) takes
the form

Cro?(@)

m(”)(ﬂf;h)i& {=u1-g YRS

(12)

ProoF. Let Theorem 3.1, Corollary 3.2. and Corollary 3.3. hold. The confidence
interval is deduced from relation

2041 (o5 (l/) _ (”) — (k) B
p <_un/2 < Vnh2rt (i) (2) n;p (z)) — dm'®) (2)Bg < uln/?) 1 a
oLk

After the derivation is obtained

oy dm'*)(z) By 02Cxk ”
P <m( () — Ve T Meap\ oaT S m¥)(z) <

() dm/(®) (z)Bx 0?Ck

We suppose negligible bias, we might neglect the second member in formula (12)
as well. [

For obtaining the variance at the fixed points € [0,1],4 = 1,...,n we can use
the formula
N CK(72 (T)
’1)(],7’(1’)7,(.7?)) ~ W, (14)
where for estimation o2(x) we use the formula
6°(x) = ) Wila, h)(Y; — riu(x))”. (15)

i—1
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In both cases we can use formula (15) for an estimation bias o%(x) (see [1]).

Algorithm
Algorithm for the confidence interval construction of the Gasser-Miiller es-
timate can by done as follows:
step 1: caleulate Gasser-Miiller estimator m') () using formula (4)

step 2: estimate value o?(x) using formula (15)
step J: caleulate § for given estimation and 100(1 — a)% confidence interval

using formula (12)

4. APPLICATION

The algorithm described in the preceding part was used for the construction
of confidence interval for real data set - January average temperature measured in
Basel during the period 1755-18535. The lowest temperature was measured in 1830
and it was —8.8°C, the highest in 1834 and it was 5.4°C. Description of label =
is equidistantly distributed on interval [0, 1] according time period 1755-1855 for
easier caleulation.

For an estimation of the Januare average temperature the kernel

05 % 3
K{z) = _;T; 2? —1)(332* —302° +5), KeSh,

cr = (105 and the bandwidth h = 0.65 were used.

M a1 83 03 04 ©0f oe @&F a8 o8 o

Fig. 1. The confidence interval for Basel 1755 - 1855 January temperature {Dashed line is the

confidence interval, solid line is estimation of January average temperatires).

For an estimation of the frst derivative of January average temperature the
kernel

- 15 22 . ":
Kiz) = E{l—r 7, KEe&,

107



J. Poménkowva

Fig. 2. The confidence interval for an estimation of the first derivative function describing January
average temperatures from Basel 1755 - 1855 (Dashed line is the confidence interval, salid line is
estimation of the first derivative of January average temperatures),

o = 0,05 and f = 0.45 wore used.

In both cases smooth kernels were used. In case of estimate January average
temperature optimum kernel (smoothness g = 1) was used. This type of kernel
minimize average mean square error. In secomd case, first derivation of January
average temperature estimate was chosen kernel with higher smoothness (g = 2).
Choosing optimmum bandwidth b was done using cross-validation method. For the
detail of choosing kernel type and bandwidth have a look |1], |6].

Presented figures show real data set with Gasser-Miiller estimate of the
trend in given data structure (Fig, 1) and the first derivation trend of same data
structure (Fig. 2). Result of the first derivation trend estimate in will be used for
specification of estimated trend.

From the figure of the first derivation is evident one stationary point (x=0.7;
vear 1825). In the interval behind this point values of the first derivation are posi-
tive, so we can expect that function is positive in the period after stationary point.
If we have a look on the hig. 2, point (x=0.3; year 1783) may appear as stationary
point as well, Value of the first derivation in this point is not unfortunately equal
to zero, but it can leads to an idea that from estimate construction and specially
corresponding confidence interval may exist stationary point in the area of the point
{x=0.3; year 1785). However, character of the first derivation function progress in-
dicate that function on interval 1755 - 1825 {into stationary poiot discussed above;
x = (.3; year 1823) will be rather decreasing.

Knowledge from the Fig. 2 employ for specification estimated trend of the
January average temperatures measured in Basel 1753 - 18535 in Fig. 1 and for its
interpretation. Between years 1755 - 1825 (Fig. 1) January average temperatures
in Basel have variable trend with slight decrease followed by slight increase and
after that again slight decrease, Data set character shows volatility, From estimate
of the trend may arise an idea, that in given period (1755 - 1823) are two extreme
points - minimum and maximum,

If we compare this indication of the progress with figure of the first deri-
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vation, we can see, that between years 1755 - 1825, the trend is really decreasing.
Founded confidence interval (respectively area where regression model proceed with
given probability) of the January average temperatures trend supposes this idea.
For its support analysis of the results from the first derivation trend (discussed
above) is used.Farther in the period 1825 - 1855 increasing trend of the January
average temperatures is expected. This fact is validates by the first derivation trend
chart.

From the long-term point of view we can say, that the January average
temperatures measured in Basel 1755 - 1855 was decreasing in the period 1755 -
1825 and were increasing in the period 1825 - 1855. This fact can be very use-
ful in agribusiness, when temperature analysis can help to increase effectiveness of
agriculture work.
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