equivalent with a subcategory ol pertect pseudo-MV algebras. dhe also proved that
every pseudo-MV algebra is an interval algebra in some perfect pseudo-MV algebra,
extending the Belluce-Di Nola results for the case of perfect MV-algebras.

The notion of a state is analogue to probability measure and it has a very important
role in the theory of quantum structures ([11]). It was first introduced for MV-
algebras by F. Kopka, F. Chovanec ([18]) and by Mundici ([23]), while for the
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case of BL-algebras the state was introduced by B. Riecan ([24]) and studied by
Dvurecenskij and Hytko ([10]). In case of non-commutative fuzzy structures, the
states were introduced by A. Dvurecenskij ([8]) for pseudo-MV algebras, by G.
Georgescu ([14]) for pseudo-BL algebras and by A. Dvurecenskij and J. Rachiinek
([12], [13]) for bounded non-commutative R¢-monoids. In [3] the notion of state
was extended to the case of non-commutative residuated lattices.

States on a particular class of MV-algebras, such as the perfect MV-algebras ([21]),
proved to have special properties, so we will extend these results to perfect pseudo-
MYV algebras. We will prove that any perfect pseudo-MV algebra admits a unique
state and that there is a one to one correspondence between the local states on the
perfect pseudo-MV algebras and the states on /-groups.

2. PRELIMINARIES ON PSEUDO-MV ALGEBRAS AND PERFECT PSEUDO-MV
ALGEBRAS

In this section we will point out some basic definitions and results concerning
pseudo-MV algebras. For unproved results or unexplained notions we refer to [15].

DEFINITION 2.1. A pseudo-MV algebra is a structure (A, &,” ,~,0,1) of type
(2,1,1,0,0) with an additional binary operation © defined viay @z = (z~ ®y~ )™,
such that the following axioms hold for all x,y € A:

vey ) =@ oY)

We consider that the operation ® has priority to the operation .

EXAMPLE 2.2. ([15]) Consider an arbitrary ¢-group (G,+,—,0) and let u €
G,u > 0. If we put by definition:
r@y=(x+y Au, - =u—z, 2~ =-+u,
then (A =1[0,u],®,”,~,0,u) is a pseudo-MV algebra.
EXAMPLE 2.3. ([6]) Let G = (ZxZ x Z,+,(0,0,0), <) be the Scrimger 2-group.
The group operation + is defined by:
(m1 + kQ,mQ + kl,nl + TLQ) if N9 is odd

(kr,mu,ny) + (k2, ma,ng) := { (kv + ko, my + ma,ny +ny) if ny is even.

The neutral element is 0 = (0,0,0) and

—(k,m,n) :{ (—m, —k,—n)) if n is odd

(—k,—m,—n) if n is even.
The order relation on G is (ki,m1,n1) < (ka,ma,na) iff

(1) n1 < ng or (ii) ny =ng, ki < ko, my < mo.
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Then
(k1,ko,m1) if ny > mny
(k1,ma,n1) V (k2,ma,no) = (k1 V ko, my Vma,ng Vng) ifng =ny
(kg,mg,’nz) if n1 < no.

One can check that G is a non-abelian (-group which is not linearly ordered and
that u = (1,1,1) is a strong unit of G. The positive cone of G is
Gt =ZxZx LI, UZT x Z* x {0}.
The coresponding pseudo-MV algebra has the form
A=T(G,u) =Z" x Z* x {0} x Z<y x Z<y x {1}
with the operations defined as follows:
(k,m,0)” =(1 -k, 1—m,1),
(k,m,0)~
(k,m, 1)~
(k,m,1)~
(k1,m1,0
(
(

)
= ( 1),
=(1—-m, 1 - k ,0),
=(1—-%,1—-m,0),

)@(k2,m2,0) (k1+k27m1 +m270)7
kl,ml,O)@(k2,mz,1) ((m1+k2)/\1 (m2+k1)/\1,1),
kl,ml,l)@(k2,mz, ) ((k/'1+k'2)/\1 (m1+m2)/\1,1),
(kl,ml,l) (kg,mz,l) (1 1,1).

The properties of pseudo-MV algebras are deeply studied in [15].
In the sequel we will use the notations:
(z7) =27 @) =2 (@) =27 (@) =2
0z=0,n+1)z=nz@zforn>1;2°=1, 2" =2"0x forn>1.
PROPOSITION 2.4. ([15]) In a pseudo MV-algebra A the following are equivalent:
a)z-®y=1;
b))y oz =0;
y=zer~0y;
dyz=20 (" dy) ;
e) there isa € A such thaty=z® a ;
flaoy™ =0
Jydz~ =1.
We define z < y iff one of the above equivalent conditions holds and ” < ” defines
an order relation on A ([15]) . Moreover, A is a distributive lattice with the lattice
operations defined as bellow:
rVy=2927 0y=ysy  0rz=20y dy=y0z Dz,
zAYy =20~ dy) =yo(y~ &z) = (2@y™~)oy = (z&y™)Oy.
We can define two implications corresponding to the two negations:
r—y=2"@y=(y ex)  andz~y=ydz~ =(xCy")~
for all z,y € A.
On a pseudo-MV algebra A we can define two distance functions dy,ds : Ax A —
A:
di(z,y) =20y ®ycz, dafz,y) =27 0ysy~ Oz
PROPOSITION 2.5. ([15]) In a pseudo-MV algebra A the following hold:
(D) di(z,y) =20y~ Vyoz~, daf(z,y)=2~"CyVy~ Ou;
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(3) d (T,O) =d (T,O) =z, d (0,1/) = dQ(OaU) =Y
4) di(z,1) =2z, do(z,1) =z~

(5) dl(lay) =Yy, d2(17y) =y~

(6) d1($,y) = dl(yim)7 dg(ﬁ?,y) = d2(y=m)'

DEFINITION 2.6. The order of an element x, denoted ord(z), is the least n € N
such that nx = 1 if such n exists, and oo otherwise.

PROPOSITION 2.7. ([15]) In any pseudo-MV algebra the following hold:
(1) ord(z™) = ord(z™);
(2) ord(z) = ord(z~ ) = ord(z™").

If A is a pseudo-MV algebra, we denote:
D(A) = {z € Alord(z) = oo}.
Obviously, 0 € D(A).

LEMMA 2.8. ([19]) If A is a pseudo-MYV algebra, then:
{z € Alz >y~ for somey € D(A)} — {x € Alz >y~ for somey € D(A)}.

We denote:
D(A)* = {2z € Ajlz > y for some y € D(A)} = {z € Alz > y™~} for some
y € D(A)}.
Obviously, 1 € D(A)*.

DEFINITION 2.9. A nonempty subset I of a pseudo-MV algebra A is called a
ideal if the following conditions are satisfied:
(I ifeelandye A, y <z, theny € I;
(I12) ifz,ye Il thenx gy € I.
An ideal I is normal if the following condition holds:
(I3) for everyz,y € A,y x~ €l ifft~ Oy € I.
An ideal I of A is called proper if I # A. An ideal I of A is called maximal if it is
proper and for each ideal J # I, if I C .J, then J = A.
An ideal I of A is called principal if there is an element a € A such that I is the
ideal generated by {a}, i.e. I =id(a) = {x € Alx < na for some n € N}.

For any normal ideal I of A we can associate a congruence defined by:
x=ry iff di(z,y)el iff dy(z,y) €l
Denote by A/I the set of congruence classes and with x/I the congruence class of
an element € A. Then, A/I becomes a pseudo-MV algebra with the operations
induced by those of A. We remark that /I =0/ iff zz € I.

DEFINITION 2.10. A nonempty subset I of a pseudo-MV algebra A is called a
filter if the following conditions are satisfied:
(Fl1)ifeel andy € A, y >z, then y € I;
(F2) ifz,y €I thenz©y € I.

DEFINITION 2.11. A pseudo-MYV algebra A is called local if for every x,y € A
the following condition hold: ord(z @ y) < oo implies ord(z) < oo or ord(y) < oco.

REMARK 2.12. If A is local then ord(z) < oo or ord(x~) < oc.

PROPOSITION 2.13. ([19]) Let A be a pseudo-MV algebra. The following are
equivalent:
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)

a) A is local;

b) D(A) is an ideal of A;

c) D(A) is a proper ideal of A;

d) D(A) is the unique mazimal ideal of A.

PRrOOF. (a) iff (¢) iff (d) is proved in [19];
(c) implies (b) is obviously;
(b) implies (¢): We have ord(1) =1, hence 1 ¢ D(A). O
PROPOSITION 2.14. ([19]) If A is a local pseudo-MV algebra then:
(1) D(A)* is a filter of A;
(2) D(A)ND(A)* = ©.
DEFINITION 2.15. ([19]) A local pseudo-MV algebra A is called perfect if for
any x € A, ord(z) < oo implies ord(z™) = 0.

PROPOSITION 2.16. ([19]) If A is a local pseudo-MV algebra then the following
are equivalent:
(a) A is perfect;
(b) A= D(A)UD(A4)*.

DEFINITION 2.17. The intersection of all mazimal ideals of a pseudo-MV algebra
is denoted by Rad(A) and it is called the radical of A.

COROLLARY 2.18. (1) If A is a local pseudo-MV algebra A, then Rad(A) =
D(A);
(2) A local pseudo-MV algebra A is perfect iff A = Rad(A) U Rad(A)*.
PROPOSITION 2.19. ([19]) If A is a perfect pseudo-MV algebra, then:
1) Rad(A)* ={y € A|ord(y) < oo} = {z~ |z € Rad(A)} = {z~ | z € Rad(A)};
2y 2@y =0 for all z,y € Rad(A);
3) If x € Rad(A) and y € Rad(A)* then x < y;
4) (Rad(A),®,0) is a cancellative monoid.

PRrROPOSITION 2.20. ([19]) If A is a perfect pseudo-MV algebra, then Rad(A) is
a normal ideal of A.

. —

EXAMPLE 2.21. ([19]) Let 7 the abelian L-group of integers, G an L-group, gy €
Gt and A = T(Z X Gies, (1,90)) where 7 x Giep is the lexicographic product of 7.
and G.

One can easily prove that

- A=1{(0.0) | g€ G*}U{(Lg) | g <} and D(A)={(0.q)|ge
Obuviously, D(A) is an ideal of A, so A is a local pseudo-MV algebra.

Because ord(0,g) = oo for all g € GV and ord(1,g) = 2 for all g < go, we conclude
that A is a perfect pseudo-MV algebra.

3. STATES ON PSEUDO-MV ALGEBRAS

In this section we will present some notions and results regarding the states on a
pseudo-MV algebra.
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In [9] there is defined a partial binary operation + on a pseudo-MV algebra A in
the following way: x + y is defined iff x <y~ and in this case z +y = x ® y.
Obviously, z + y is defined iff z <y~ iff y <z~ iff y©z =0.

DEFINITION 3.1. (f8]) A state on a pseudo-MV algebra A is a function s : A —
[0,1] such that:
(s1) s(1) = 1;

(s2) s(z +y) = s(x) + s(y) whenever x + y is defined in A.

EXAMPLE 3.2. (/8]) Consider the pseudo-MV algebra A = T'(G,u) from Ezample
2.8 and define s(k,m,0) =0 and s(k,m,1) = 1. Then s is the unique state on A.

PROPOSITION 3.3. (/8]) Let s be a state on a pseudo-MV algebra A. Then, for
all x,y € A the following hold:
1) s(0) =
2) if x < y, then s( s(y
3) if x <y, then s(y) — s(z
4) s(z7)=s(z~)=1-s(z
5) s(z” ) =s(2™") = s(z);
6)
7)

b

z) < s(y);
- ))28(1'”@1/):8(1/@:6*);

)

s(x V) + 5@ Ay) = s(z) + s(y);
s(zdy)+ sy ©x) = s(x) + s(y).

PROPOSITION 3.4. Let s be a state on a pseudo-MV algebra A. Then, for all
x,y € A the following hold:
(1) s(x) + sz = y) = s(y) + s(y = @);
(2) s(z) +s(z ~y) = s(y) +s(y ~ 2);
(3) s(di(z,y)) = s(da(z,y)) = s(z Vy) —s(z Ay).

PROOF. Since the pseudo-MV algebras are particular cases of pseudo-BL algeb-
ras, the above assertions follow from a similar result proved in [14] for pseudu-BL
algebras. O

PROPOSITION 3.5. (/8]) If s is a state on a pseudo-MV algebra A, then Ker(s) =
{z € A| s(x) =0} is a proper normal ideal of A.

PROPOSITION 3.6. (/8]) Let A be a pseudo-MV algebra and s a state on A. For
all z,y € A, the following are equivalent:
(a) 2/ Ker(s) = y/Ker(s):
(0) s(zx Ay) = s(x Vy);
(c) s(z) = s(y) = s(x Ay).

PROPOSITION 3.7. ([8]) Let A be a pseudo-MV algebra and s a state on A.
Then:
(1) the function §: A/Ker(s) — [0,1] defined by $(z/Ker(s)) = s(z) is a state on
A/Ker(s);
(2) s(z@y) =s(y ®z);
3) s(zoy) =s(y© ).

Let us denote by [0,1] the standard MV-algebra of the real unit interval [0, 1]
with the operations: z @y =min{z+y,1}, 20y =max{z+y—1,0}, 2~ =1—=.
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DEFINITION 3.8. (/8]) Let A be a pseudo-MV algebra. A state-morphism on A
is a function s : A — [0,1] such that the following conditions hold for all x,y € A:
(sm1) 5(z ® ) = 5(x) & 5(y);

(smso) s(z7) =s(z™) =1 — s(x);
(sm3) s(1) = 1.

Obviously, any state-morphism is a state, but in general, the converse does not
hold.

PROPOSITION 3.9. ([8]) A stale s on a pseudo-MV algebra A is a state-morphism
iff
s(z ANy) = min{s(x),s(y)} for all x,y € A.

ProposITION 3.10. (f8]) A state s on a pseudo-MV algebra A is a state-morphism
iff Ker(s) is a maximal ideal of A.

ProrosiTION 3.11. ([8]) If I is a normal and mazimal ideal of a pseudo-MV
algebra A, then there is a unique state-morphism on A such that Ker(s) = 1.

PROPOSITION 3.12. ([8]) Let s1 and so be two state-morphisms on a pseudo-MV
algebra A such that Ker(s1) = Ker(sa). Then s; = sa.

4. STATES ON PERFECT PSEUDO-MV ALGEBRAS

In this section we will prove first that any perfect pseudo-MV algebra admits a
unique state. We will define the local states on a perfect pseudo-MV algebra and we
will investigate their relation with the states defined on the corresponding abelian
{-group.

THEOREM 4.1. Any perfect pseudo-MV algebra A admits a unique state.

PROOF. If A is a perfect pseudo-MV algebra, then by Proposition 2.13, Corollary
2.18 and Proposition 2.20, Rad(A) is the unique normal and maximal ideal of A.
(With the other words, the unique maximal ideal of a perfect pseudo-MV algebra
is normal). According to Proposition 3.11, there exists a unique state-morphism s
on A such that Ker(s) = Rad(A). By Proposition 3.10, the above state-morphism
s is a state. [

PROPOSITION 4.2. Let A be a perfect pseudo-MV algebra and s the unique state
on A. Then A = Ker(s) U Ker(s)*.

ProOF. Since A is perfect it follows that A = Rad(A)U Rad(A)* and Rad(A) =
Ker(s). Hence, A = Ker(s)U Ker(s)*. O

COROLLARY 4.3. If s is the unique state on a perfect pseudo-MV algebra A, then
s(4) ={0,1}.

PrOOF. Consider 2z € A, so # € Ker(s) or z € Ker(s)*. It follows that = €
Ker(s) or = € Ker(s), so s(z) =0 or s(z~) = 0. Hence, s(z) =0 or s(x) = 1.
Thus, s(4) = {0,1}. O
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DEFINITION 4.4. If A is a perfect pseudo-MV algebra, then a local state on A
is a function s : Rad(A) — Ry satisfying the conditions:
(Is1) s(0) = 0;
(Is2) s(z ® y) = s(x) + s(y) for all z,y € Rad(A).
If a € A such that Rad(A) = Id(a) then a local state s on A is normalized if
s(a) = 1. A local state s is faithful if s(x) # 0 for all x € Rad(A), z # 0.

PROPOSITION 4.5. Let A be a perfect pseudo-MV algebra and s a local state on
A. Then, for all x,y € Rad(A) the following hold:
(1) if x <y then s(y) — s(z) = s(y @ 2") = s(z™ O y);
(2) s(zVy) +szAy)=s(x)+s(y);
3) s(z@y) + sy ©x) = s(z) + s(y).

Proor. (1) Fromy € Rad(A), yoz~ < yand z~Cy < y, we get yOxr~ € Rad(A)
and 2~ ©y € Rad(A). From z <y and (4g) wegety =z @2~ Qy=y Oz~ ® .
Hence, s(y) = s(z) + s(z™ ©y) = s(y @ 27) + s(x).

Thus, s(y) — s(z) = s(z™ O y) =s(y ©z7).

(2) Since z Ay < y, it follows that s(y) —s(zAy) =s(y© (zAy)")
Similarly, from z <z Vy we get s(zVy) —s(z) =s((zVy 0z )=
It follows that s(z Vy) + s(z Ay) = s(z) + s(y) ;

(3) According to [15] Prop. 1.25 we have z = (z @ y) Oy~ @y O .
Hence, s(z) =s((z@y) Oy~ dyoz)=s((z®y) Oy~ ) + sy ® z).
Because y <z @y, we get s(zdy) —s(y) =s((z®y) Oy ) =s(x) —s(y © z).
Thus, s(z @ y) +s(y ©z) = s(z) +s(y). O

=s(yor ).
s(yozT).

COROLLARY 4.6. If s is a local state on a perfect pseudo-MV algebra A and
x,y € Rad(A) such that x <y, then s(x) < s(y).

PROPOSITION 4.7. Let A be a perfect pseudo-MV algebra and a function
s: Rad(A) — Ry. Then, for all x,y € Rad(A) the following are equivalent:
(a) s(x ©y) = s(x) + 5(y);

(0) s(di(2,y)) = s(dz(z,y)) = s(zVy) —s(zAy).

Proo¥F. (a) = (b) : Since z Ay < x V y, applying Prop. 4.5 (1) we have:
SV y) - s Ay) = sz V) © @A) = s(di(zp)
s(zVy) —s(@Ay) =s((z Ay)~ © (zVy)) = s(da(z,y))-
(b) = (a) : fa<b,thena®b” =0 and b~ ®a = 0. Hence:
di(a,b) =(a@b )V(bOa )=boa,
dy(a,b) = (@™ ©b)V (b~ ®a) =a™ ©b.
It follows that:
s(di(a,b)) =s(aVvbd) —s(and), so s(b®a”)=s(b) — s(a),
s(da(a, b)) = s(aVb) —s(and), so s(a™ ®b) =s(b) — s(a).
For a = =z, b—y@wwege sydz)oz)=s(ydz) — s(x).
Hence, s(x Ay) = s(y @ x) — s(x). Slnce x,y € Rad(A) we have y @ z = 0, so
y<z .
Thus, z~ Ay =y and s(y) = s(y ® z) — s(x).
Fora=z,b=xz®y weget s(z™ O (zdy)) =s(xdy) — s(z).
Hence, s(z™~ Ay) = s(x @ y) — s(z). Since z,y € Rad(A) we have x ®y = 0, so
y<z.
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Thus, 2~ Ay =y and s(y) = s(z @ y) — s(x).
We conclude that s(z @ y) = s(y ® z) = s(x) + s(y). O

DEFINITION 4.8. ([19]) A perfect pseudo-MV algebra A is called strong perfect

if
x~ =z forall x € A.

REMARK 4.9. ([19]) One can easily check that the above condition is equivalent
with each of the following conditions:
(a) z= =z~ for all x € A;
() =z =2z~ for all x € Rad(A);
(c)x=a" =z~ forallz € A.

LEMMA 4.10. ([19]) Let A be a strong perfect pseudo-MV algebra, G = D(A)
and
f: Rad(A) — G an isomorphism of latticial monoids. If a € Rad(A), then the
following are equivalent:
(a) {a} generates Rad(A);
(b) f(a) is a strong unit of G.

By extending the Di Nola-Lettieri functors D and A, I. Leugtean proved in [19]
that the category of f-groups is equivalent with the category of strong perfect
pseudo-MV algebras. Let A be a strong perfect pseudo-MV algebra. We only re-
mind the steps of construction for the extended functors D and A in the case of
non-commutative structures:

(S1) There exists a ¢-group D(A) associated with A such that Rad(A) and D(A)*
are isomorphic latticial monoids and D is a functor from the category of strong
perfect pseudo-MYV algebras to the category of f-groups. More precisely, if a,b €
Rad(A) let b, be the unique element in Rad(A) such that a + b, = b+ a. We

define the equivalence ” =” on Rad(A) x Rad(A): (a,b) = (¢,d) iff a+dy = ¢+ b.
Then D(A) = Rad(A) x Rad(A)/= is a {-group with the operations: [a,b] +[c,d] =
[a + ¢y, d + b], —[a,b] = [b,a] where [a,b] is the equivalence class of the element

(a,b). Rad(A) can be identified with the set {[z,0] | 2 € Rad(A)};

(S2) If G is a f-group, then A(G) = I(Z x Gies, (1,0)) is a strong perfect pseudo-
MYV algebra and A is a functor from the category of ¢-groups to the category of
strong perfect pseudo-MV algebras; ;

(S5) A and A(D(A)) are isomorphic pseudo-MV algebras. If G is an ¢-group, then
G and D(A(A)) are isomorphic ¢-groups;

(S4) The functors D and A establish a categorical equivalence between the category
of strong perfect pseudo-MV algebras and the category of /-groups;

(S5) The restrictions of functors D and A establish a categorical equivalence betwe-
en the category of strong perfect pseudo-MV algebras with Rad(A) principal ideal
and the category of unital f-groups;

(S6) The category of pseudo-MV algebras is equivalent with the category of strong
perfect pseudo-MV algebras with Rad(A) principal ideal. Indeed, if A is a pseudo-
MYV algebra, then according to [7] there exists a unital £-group (G, u) such that A
is isomorphic with T'(G,u). The strong perfect pseudo-MV algebra associated to A
will be A = A(G). Conversely, if A is a strong MV-algebra such that Rad(A) is a
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principal ideal then consider (D(A), ) the unital /-group associated with A. The
pseudo-MV algebra corresponding to A is T'(D(A),u).

THEOREM 4.11. If A is a strong perfect pseudo-MV algebra and G an £-group
such that G = D(A), then there is a one to one correspondence between the local
states on. A and the states on G. Under this correspondence, if Rad(A) = Id(a)
and u = [a,0] is a strong unit of G, the normalized local states on A are mapped
onto normalized states on G.

PROOF. We recall that a state on a unital ¢-group (G, u) with strong unit u is a
function s : G — R such that: (i) s(g1 + g2) = s(g1) + s(g2) for all g1,92 € G, (i7)
s(g) > 0 for all g € G. A state s on (G, u) is normalized if s(u) = 1.

If s is a state on G, we define a local state s4 on A by sa(z) = s([z,0]) for all
x € Rad(A).

Conversely, if s is a local state on A, we define a state sg on G by sg([z,0]) = s(z)
for each [z,0] € G*. O

REMARK 4.12. It was proved in [16] that even in Abelian (-group there exists a
nonunital Dedeking £-group G such that a unique real valued positive mapping is
the zero function. Consequently, there is a perfect MV algebra such that a unique
local state is the zero function, namely in A(G).
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