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Abstract

In the present communication, a new generalized R-norm information measure has been defined and
characterized by infimum operation. Axiomatic characterization of the generalized measure of inaccuracy has
been discussed. Joint and conditional cases have also been studied in detail.
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1. INTRODUCTION

Let us consider the set of positive real numbers, not equal to 1 and denote this by

R* definedas R* = {R :R>0, R# 1}. Let A, with 7> 2 be a set of all

probability distributions

P=2(pys Pyreeeeereeeirerinnns D)) piZO,foreachiandZn:pizl

i=1

Boekee and Lubbe (1980) studied R — norm information of the distribution P defined for

Re R" by

1

R 2 R
Hy(Py=—|1-|> pf (M)
R-1 i=1

The R-norm information measure (1) is a real function A — R defined on A,, ,

where 7> 2 and R™ is the set of real positive numbers. This measure is different from
entropies of Shannon (1948), Renyi (1961), Havrda and Charvat (1967) and Daroczy
(1970).The most interesting property of this measure is that when R — 1, R-norm
information measure approaches to Shannon’s entropy and in case R — oo,

Hy(P)— (1-max p,), where
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The measure (1) can be generalized in so many ways. Hooda and Ram (2002) proposed
and characterized the following parametric generalization of (1).

2-8
H,f(P)—R ﬂ 5 (Zplzﬂj , 0<f<1,R(>0)=1 2)

i=l1

They called (2) as the generalized R-norm entropy of degree ﬂ which reduces to (1),

when f=1.
In case R = 1, (2) reduces to

o

; -8
Hﬂ(P)—ﬁ : (Zp, ﬂj , 0<p<l. 3)

i=1

1
When Y =——, (3) reduces to

2-p

1
Y 1
7P—— , —<y<l. 4
H”(P) - (Ep,j 5 14 (4)

This is an information measure which has been mentioned by Arimoto (1971). It may be

noted that (4) also approaches to Shannon’s entropy when ¥ — 1. Thus (1) measure can

be generalized further parametrically in so many ways and consequently, we consider the

following R-normed measure:
2a-p

o,p ‘R % _R_ R
LS sy sl Ll DIVl B

i=1

21, 0< <1, R>0)#1,0<R+ [ #2¢. (5)
It may be noted that the generalized R-norm information measure (5) of type & and

degree B gives a family of R-norm information measures. It reduces to (2) when ¢ =1,

which further reduces to (1) whenﬂ =1 .Thus the generalized information measures

have more flexibility for the application point of view that’s why the measures are

generalized parametrically.
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In the present paper we characterize a non-additive generalized R-norm
information measure (5) by applying the infimum operation in section 2. In section 3 we
give axiomatic characterization of a generalized measure of R-norm accuracy through
functional equation. In section 4 we study joint and conditional generalized R-norm

information measures.

2. CHARACTERIZATION BY APPLYING INFIMUM OPERATION
We can consider the generalized R-norm entropy (5) as weighted
arithmetic mean representation of elementary R-norm entropies of type & and degree yij

of occurrences of various single outcomes.

THEOREM 2.1. Let

RM(*P:'):IH;LZO![I_*P,&%M} 021,0<fB<1, R0 #1,0<R+ =20,
(6)
then
H? (P)=inf Y p, £ (p,) . @
=l

where the operation infimum is taken over the probability distribution

(5 Dy ¥ Py, #p )e A,
PROOF. Let us consider

n R+p-2c
FEPxp )= 1-
N e I LS ®

We minimize (8) subject to natural constraint

Yxp =1 ©)
i=1

For this we consider Lagrangian

R " R+p-2c n
= m{l—zpi(*pﬂ ! }f/’{Z*pi -1j

=1
Differentiating with respect to * p,, we have

oL £2e
3. =-—p;,(:p) * +4 (10)
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JL
For extremum value we put— —— = 0 which gives
a(*p;)
R R
#p, = A7 pacy (an
d’L 0, R p e
We see that P p when % p /1/? 2 pap Hence the value of * p; given
by (11) is minimum and using (9) in (11), we can find the value of A and consequently,
we have
L
sp =L 51, 0<B<1, R>0)#1
i n R - - ) (12)
Zp 20-f
Now we consider R.H.S of (7)
R+p-2a
, ® Zp pi 2 p
inf Y p,f27 (+p, )= 1-
*pi;‘,p,fle Ry v
I n R R
(z b;2e-p
i=1 |
n R
Y, piap
— R 1 _ i=1
_ R+p-2
R+ (-2« ) R -
Z D;2e-p
B 20—
R 1 < R R
= — [.20:—,8
R + ﬂ - 20{ i=1 p
=H*"(P). (13)

156



Generalized R-norm Information Measures
Further without any loss of generality, we may assume that corresponding to the observed

probability distribution P € A, there is a prior probability distribution Q € A, and
replacing ¢ (+p,) by 2 (q)in (7) we have

Hi? (Py=inf > p.fi (a,) (14)

o=l

In case we do not apply the operation of infimum to (14), then it depends on two

probability distributions P and Q. ForR=1and & =1, f, R“’ﬂ (g,) is analogous to

1 41 1
—\ =g, which reduces to 10— in case f — 1.
gt=a” 7
Thus (14) becomes
« 1 & _
HR’IB(P)WZ pi(qiﬁl_l)a (15)
—-p =

which is a generalized inaccuracy measure of degree /3 characterized by Sharma and

Taneja (1975). Therefore, we can represent (7) via f; Ra’ﬁ (g,)-

Hence H# (P/Q)=Yp,. fi"(q,)

i=1

R n R+p-2c
= 11—qg, =& , =21, 0< <1, RG0)#1,0<R+ [ #2c.
R+ﬂ_2a{; p,( 9, ﬂ B (>0) B

(16)

Actually, (16) can also be described as the average of elementary R-norm inaccuracies

f Ra’ﬂ (g,), 1=12,cccce ,n1 and so can be called as R-normed inaccuracy

measure of type & and degree 3. Thus it seems plausible that (16) may be

characterized and then by taking its infimum we can arrive at (7).

In the next theorem we characterize the elementary information function

7 Ra’ﬂ (g,) by assuming only two axioms and applying infimum operation.
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THEOREM 2.2. Let f be a real valued continuous self-information function defined on

(0,1] satisfying the following axioms:

R+ (-2
Axiom 2.1, f ()= 1)+ F () =T EEZ2E 1y 1
) 1 R 2a-R-f8

Axiom 2.2. f(n):R-l—,B—Z(Z(l_n R J, a21, 0< <1, R>0)#1,0<R + f# 2«
and 7 =23,.ccccccvenrnnne. is a maximality constant. If f,*” (*p.) is replaced by

1P (g.) in (13), the result holds.

R
PROOF. By taking f(x) = m (1 - ¢(X)) in axiom 2.1, we get
R R R R

m(l - ¢(xy)) = m(l - ¢(x))+ m(l - ¢()’))' m(l - ¢(x))(1 - ¢(y))
or

P(xy) = ¢(x) + d(y) (17)

The relation (17) is well known Cauchy’s functional equation (refer Aczel (1996) ). The

continuous solution of (17) is @#(x) = x*,  where a # 0 is an arbitrary constant. On

, . R+ (-2
using axiom 2.2, we get @ = ————— and hence
R R+p-2a
f@ = l-x |
R+p-2x

which is exactly of the form of (6). Next the measure (7) can be easily obtained by
applying the operation infimum on the equation (16) on the lines of theorem 2.1.

REMARKS: For an incomplete probability distribution scheme

P=(P)sPyreeeeeeeeieinancns P, P20, > p <L f5P(g), i=12 ,

i=1
associated with individual events may be worked out. Then as in case of (16) we may

define
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> i)
i Pi

HEP(P1Q)=(Dys Paeserereernrrrerenenne B I T S .q,)

(18)
By using the operation infimum with respect to q;'s the equation (18) gives
_ s
n R R
R le pi2a-p
H{P(PI1Q)=———|1-| £ (19)

R+p-2c Z”:p_
i=1

which is the R-norm entropy of type & and degree ,5 of incomplete probability

distribution. It is also worth mentioning that if we take arithmetic average with weights as

continuous function w(.), then we get the general expression

S w(p) £ ()
HZP(P1Q) =+ (20)

iw(p,-)

By considering different weight w(.) satisfying the condition

w(pq)=w(p)w(q), where w(.) # 0, we can obtain various generalized R-normed

entropies by using the operation infimum with respect to ¢,'s .

In next section we characterize the generalized measure of inaccuracy (16)

for two distributions P and Q€ A through functional equation.

3. AXIOMATIC CHARACTERIZATION

Let Sn = An XAH - R+, n=23,...... and Gn be a sequence of

functions of p;'s and q;'s ,i=12,.ccceee... ,n. over S satisfying the following

axioms:

AXIOM 3.1. G, (P:Q)=a, + aZZh(pi,qi) where a, and a, are non-zero

i=1
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constants, and
p.qe J=0Dx0]) {0,y0<y<1} {1y):0<)y'<I1}.
This axiom is also called sum property.

AXIOM 32.For P,Qe A, and P’,Q'e A_,G, satisfies the following property
4 ’ ’ ’ 1 4 ’
G, (PP':00) =G, (P: Q)+ G, (P': 0) =G, (P: 0)G, (P 0.
1

AXIOM 3.3. h(p, q) is a continuous function of its arguments p and q.
AXIOM 3.4. Letall p;'s and q;'s are equiprobable posterior and prior probabilities of

events respectively, then

2a-R-f
Gn(l, ................ L 1) R[l_n ; j where n=23, ,
nn

a>21,0< <1, R(>0)#1,0<R+f#2c.

First of all we prove the following three lemmas to facilitate to prove the main theorem:
LEMMA 3.1. From axioms 3.1 and 3.2, it is very easy to arrive at the following

functional equation:

n m , , _a n m , ,

> h(pipj,q,»qj)=( 2]Zh(p,»,q,»)Zh(pj,qj), @1)
i=l j=1 1 Ji=l j=1

where (pi,qi),(p;,q;)e J fori= 1,2, i, gnandj =12, ,m.

LEMMA 3.2. The continuous solution that satisfies (21) is the continuous solution of the

functional equation:

_az

h(pp',qq’) = ( ]h(p,q)h(p',q'). (22)

a,
PROOF. Let a,b,¢,d and a’,b’,c’,d’ be positive integers such that
1<a’<al<b’'<bl<c’<c,and 1<d"<d.

Setting n=a—a’ +1=b—-b'+1land m=c-c'+1=d-d’+1,

1. , a
p,=—(=12, . ,a—=a), Paws =

’

—
S

R R =0, Qo = —»

b
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, 1. ’ ’ ¢
pj :—(] =1,2, ................. ,C—C), Pecyi =
c c
, : d
ql_g(]—l,Z, ................. d=d),  Quga d

From equation (21) we have

(a—a’)(c—c’)h[éé}(c—c’)h[j—é%} (a —a)h[
TN

Takinga’ = b"=c"=d’ =1 in (23), we get

h(L’LJ: — 9 h(l’ljh(l’lJ
ac bd a, a b)\cd

Taking a’ = b’ =1 in (23) and using (24), we have

h(c_’d J: —% h(l’ljh(c_’ij
ac bd a, ab)\c d

Again taking ¢’ = d’ =1 in (23) and using (24), we get

ersa - feals)
ac bd a, cd)\a b

Now (23) together with (24), (25) and (26) reduces to

h(ac’bdjz —a, h(a b_jh( dj
ac bd a, a b c d

’

’
’

) h(% H

{0

(23)

24

(25)

(26)

27)

a b ¢’ ,
Putting — = p, ; =q, : =p, g =q in(27), we get the required results (22)

a

for rational numbers which by continuity of h holds for all real p, g, p,, q ‘e J.

Next we obtain the most general solution of (22).
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LEMMA 3.3. The most general continuous solutions of equation (22) are given by

h(p,q)Z(_—al]p”qv,where H#0, v+0 (28)
a,
and h(p,q)=0 (29)
—-a
PROOF. Taking g(p,q) =( 2 ]h(p,q) in (22), we have
a
g(pr’.aq’) = g(p.9)g(p".4) (30)
The most general continuous solution of (30) [cf Aczel (1996) ] is given by
g(p.g)=p“q", £#0 and v#0 31
and
g, =0 (32)
L —4a, .
On substituting g(p,q) =| — [A(p,q) in (31) and (32) we get (28) and (29)
a

respectively. This proves the lemma 3.3.

THEOREM 3.1. The inaccuracy measure (16) is uniquely determined by the axioms 3.1
to 3.4.

PROOF. Substituting the solution (28) in axiom 3.1 we have

Gn(P/Q)=a1(l—Zp,-”q,-V} pv #0 (33)
i=1
Using axiom 3.4 in (33), we get
20-pB-R
2 L L I I A
n non n) R+p[-2ox
(34)
From (33) we have
1 11 1 v
Gn[—, ................ e prerenresaenes —]=a1(—n1” ) n=23 . (3%
n nn n
From (34) and (35) we have
R 20-p-R
alimn ) R s
R+p-2cx

162



Generalized R-norm Information Measures

It implies
R 20— [ —-R
alzi’ l-ﬂ-V:%
R+p-2x R
or
R R+[5-2
alzi’ [u:l, V:M
R+p-2c

Now from (33) we have

G P/ R | n R+p-2c R n | R+p-2c
W Q)—m _;piqi R —mzpi( —-q; R )

i=1

=H"(P/Q).
Hence this completes the proof of the theorem 3.1.

REMARKS: In the equation (28) if £ =0 and v =0 , then

h(p,q) = (‘a"l J :

which is a trivial solution and is of no interest. The solution (29) does not even contain

any variable and hence it is to be discarded.

4. JOINT AND CONDITIONAL GENERALIZED R-NORM INFORMATION
MEASURES

In this section, we consider joint and conditional probability distributions of
two random variables f and 77 having probability distributions P and Q over the sets
X= {xl I U , xn} and ¥ = {yl ) 2 , ym} respectively. Then the
generalized R- norm information measure of type & and degree [ of the random

variables

5 ,1] are respectively given by
HE? (&)= Hy? (P) and HEP (n)=H’(0),
where p, =Pr(E=x,)i =12 ........ n oand ¢, =Pt =y,)j=12cm are

the probabilities of the possible values of the random variables. Similarly we consider a
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two-dimensional discrete random variable (f ,77) with the joint probability distribution
7 ={7 st} where 7, =Pr(E=x,n=p,), i=120m;j=12,m s

the joint probability for the values (x,-y_,- ) of (f ,77).

we shall denote conditional probabilities by P and q ;; such that

7, =PFq,=q9,p; p,= Zﬂ' and q, = Zﬂ

Jj=1 i=l

DEFINITION 4.1. The joint generalized R-norm information measure of type & and
degree f for Re R+ and @ =1, 0< <1, R>0)#1,0<R+ [ #2 is
given by

., R n om L R
HRﬁ(faﬂ)zm 1‘{22’%‘”‘4 : (36)

It may be seen that F g’ﬂ (é’ ,77) is symmetric in f and’] . If f and 7] are stochastically

independent, then the following non-additive property holds:

G =1 @)+ ) - L2 @ ). o

DEFINITION 4.2. The average conditional generalized R-norm information measure of
type & and degree ,B for Re R* and

a21,0< <1, R>0)#1,0<R+ B #2a is given by

20-f
R
"HEP (n/ b
&)= R+ﬁ o ;p Zq (38)
or alternately
20—
R R
“HY (/&)= ———— 20-f . 39
2Png)= R+ﬁ " ;p;q (39)
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The two conditional measures (38) and (39) differ according to the probabilities p; have

been taken. The expression (38) is a true mathematical expression over f , Whereas the

expression (39) is not.
In next theorem, we prove three results for the conditional generalized R-norm

information measures given by (38) and (39).

THEOREM 4.1. If f and?] are discrete random variables then for R e R+ and

a>1,0<fB<1, R(>0)#1,0<R+ [ # 2 then the following inequalities

holds

"H*P(n/ &)< HEP (1) "
“HE () E)< HE P () .
“H n/ EHE (n/6) h

The equality sign holds iff f and’] are independent.

PROOF. We know [ refer Beckenbach and Bellman (1971)] that for

R >l or R+fB>2x
20—
R 20;'6 20-p

R R

m n Za_ﬂ n m 2
-B
Z{ xz’/] < inia . (43)
Jj i=1 i=1 | j=1

—1

Setting X; =7, 20 in (43), we have
y y

< 20-f 20-
m n 203 K n m 5 R 7 R 4
a—
2|27 <2 |27 “4)
j=1 L=l i=1 | j=1
or
< 20— < 20-f3
R m R
2a-p < C ( )20:—,6
2.4 <2 | 2\ap
j=1 i=l | j=1
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or
20— 20—
R R
Zq2a B Zq2a— (45)
It implies
20-f8 20-f8
R R
l_zp Zqza- Zq2aﬁ
R
Since ——————— >0, in view of R +ﬁ >2a and 0< ﬂ <1, therefore on
R+[-2c
multiplication we get
Hyl (/1 E)<HE (). (46)

On the same lines, we can prove that (46) holds for0 < R+ < 2a and 0< B<1.

Hence (40) holds for all Re R* and

az1,0<pB<1, R>0)#1,0<R+ S #20. The equality sign holds iff 7;

separable in the sense that 7; = p,q ;.

From Jensen’s inequality for R+ >2a and 0< <1, we find

R

R
Zp qz"’ 20f {;piqﬁ}m_ = g2

20—
After summation over j and raising both sides to power J , we have
2a—ﬂ 2a-p
R

Zp Zq“’ / Zqz""

R
Using m>0, ClSR+ﬁ>20[ , we get

CHE 1)< HEY ().
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Equality holds if for all i, 4;; = ¢ ;, which is equivalent to the independent property.

For 0< R+ <2 the inequality in (48) reverses. However, in view of

R
———<0,as R+ <200 and 0< <1, (49) still holds.
R+p-2c d p @

Hence result (41) is proved.

Next for the proof of (42) we apply Jensen inequality and obtain

20~ 20-p
n m R R n m R R
20-f8 20-f 50
.| 2.4; SOW DN 50
i=1 j=1 =l j=l
It implies
2a-p 20—

R R R R

i= Jj= i= j=

R
Since ————— >0, in view of R+ﬂ >2a and 0< ﬁ Sl,therefore on
R+[-2c

multiplication we get

“HEP(n/E)< "HEP (1 E), which is the required result.

Hence (42) is proved forall Re R+ and 0< B <1

This completes the proof of Theorem 4.1.

5. CONCLUSION
In the context of feature selection problem in pattern recognition, many authors
have studied upper and lower bounds on the Bayesian property of error. A relation

between the probability error and average conditional generalized R-norm information
measures of type & and degree ,B can be established in the form of an inequality. In case

a=1L3=1 and R — oo, this inequality can be considered as the analog of well

known Fano-bound inequality.
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The mean code length due to Boekee and Lubbe (1980) can be generalized and
the generalized R-norm information measure given by (5) can be applied in study of the

lower and upper bounds of the generalized mean codeword length.
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