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Abstract

                 In the present communication, a new generalized R-norm information measure has been defined and

characterized by infimum operation. Axiomatic characterization of the generalized measure of inaccuracy has
been discussed. Joint and conditional cases have also been studied in detail.
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1. INTRODUCTION

         Let us consider the set of positive real numbers, not equal to 1 and denote this by

+R   defined as { }1R   ,0: ≠>=+ RRR . Let n∆  with 2≥n  be a set of all

probability distributions
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Boekee and Lubbe (1980) studied R – norm information of the distribution P defined for

+∈ RR  by 
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The R–norm information measure (1) is a real function  
+→∆ Rn  defined on n∆ ,

where 2≥n  and +R  is the set of real positive numbers. This measure is different from

entropies of Shannon (1948), Renyi (1961), Havrda and Charvat (1967) and Daroczy

(1970).The most interesting property of this measure is that when 1→R , R-norm

information measure approaches to Shannon’s entropy and in case ∞→R ,  

  ),max1()( iR pPH −→ where

n.,..........1,2,......i = .
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The measure (1) can be generalized in so many ways.  Hooda and Ram (2002) proposed

and characterized the following parametric generalization of (1).
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They called (2) as the generalized R-norm entropy of degree  β  which reduces to (1),

when  1=β . 

In case R = 1, (2) reduces to 
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When 
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This is an information measure which has been mentioned by Arimoto (1971). It may be

noted that (4) also approaches to Shannon’s entropy when 1→γ . Thus (1) measure can

be generalized further parametrically in so many ways and consequently, we consider the

following R-normed measure:
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It  may be noted that  the generalized R-norm information measure  (5) of type α  and

degree β  gives a family of  R-norm information measures. It reduces to (2) when 1=α ,

which  further  reduces  to  (1)  when 1=β .Thus  the  generalized  information  measures

have  more  flexibility  for  the  application  point  of  view  that’s  why  the  measures  are

generalized parametrically.
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                       In the present paper we characterize a non-additive generalized R-norm

information measure (5) by applying the infimum operation in section 2. In section 3 we

give axiomatic  characterization of a generalized measure of R-norm accuracy through

functional  equation.  In  section  4  we  study  joint  and  conditional  generalized  R-norm

information measures.

2.  CHARACTERIZATION BY APPLYING INFIMUM OPERATION

                 We can consider the generalized R-norm entropy (5) as weighted

arithmetic mean representation of elementary R-norm entropies of type α  and degree β

of occurrences of various single outcomes.

THEOREM 2.1.  Let
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where the operation infimum is taken over the probability distribution

( ) nnppp ∆∈∗∗∗ .....,...........,........, 21 .
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We minimize (8) subject to natural constraint 
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For this we consider Lagrangian
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For extremum value we put 0
)p(

L

i

=
∗∂

∂
, which gives

βα
αβλ −

−=∗ 2
2

R

i

R

i pp                                                                                                    (11)

We see that  ,0
p

L
2

i

2

>
∗∂

∂
when 

βα
αβλ −

−=∗ 2
2

R

i

R

i pp . Hence the value of  ip∗  given

by (11) is minimum and using (9) in (11), we can find the value of λ  and consequently,
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Now we consider R.H.S of (7)
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Further without any loss of generality, we may assume that corresponding to the observed

probability distribution nP ∆∈ , there is a prior probability distribution nQ ∆∈  and

replacing )(by    )( ,, qfpf RiR

βαβα ∗ in (7) we have 
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In case we do not apply the operation of infimum to (14), then it depends on two

probability distributions P and Q. For R = 1 and ,1=α )(,
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which is a generalized inaccuracy measure of degree β  characterized by Sharma and

Taneja (1975). Therefore, we can represent (7) via )(,
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Actually, (16) can also be described as the average of elementary R-norm inaccuracies  

n,..........1,2,......i    ),(, =iR qf βα
  and so can be called as R-normed inaccuracy

measure of  type α  and degree β . Thus it seems plausible that (16) may be

characterized and then by taking its infimum we can arrive at (7).

                        In the next theorem we characterize the elementary information function

)(,

iR qf βα
 by assuming only two axioms and applying infimum operation.
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THEOREM 2.2. Let f be a real valued continuous self-information function defined on

(0,1] satisfying the following axioms:
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The relation (17) is well known Cauchy’s functional equation (refer Aczel (1996) ). The

continuous solution of (17) is      ,x)( a=xφ where 0a ≠  is an arbitrary constant. On

using axiom 2.2, we get 
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which is exactly of the form of (6). Next the measure (7) can be easily obtained by

applying the operation infimum on the equation (16) on the lines of theorem 2.1. 

REMARKS: For an incomplete probability distribution scheme 
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associated with individual events may be worked out. Then as in case of (16) we may

define 
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By using the operation infimum with respect to s'q i  the equation (18) gives
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which is the R-norm entropy of type α  and degree β  of incomplete probability

distribution. It is also worth mentioning that if we take arithmetic average with weights as

continuous function w(.), then we get the general expression
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By considering different weight w(.) satisfying the condition

     , )()()( qwpwpqw = where 0(.) ≠w , we can obtain various generalized R-normed

entropies by using the operation infimum with respect to sqi ' .

                   In next section we characterize the generalized measure of inaccuracy (16)

for two distributions P and nQ ∆∈  through functional equation.

3.  AXIOMATIC CHARACTERIZATION 

             Let .......2,3,......n   ,S nnn =→∆×∆= +R  and nG  be a sequence of

functions of s'p i  and s'q i  , i = 1,2,..............,n. over nS  satisfying the following

axioms:
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constants, and 

{ } { }10  :),1(10);,0()1,0()1,0(, ≤′≤′≤≤×=∈ yyyyJqp .

This axiom is also called sum property.

AXIOM 3.2. For G ,Q,P  and  QP, nmn ∆∈′′∆∈  satisfies the following property
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AXIOM 3.3. h(p, q) is a continuous function of its arguments p and q.

AXIOM 3.4. Let all s'p i  and s'q i  are equiprobable posterior and prior probabilities of
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First of all we prove the following three lemmas to facilitate to prove the main theorem:

LEMMA 3.1.  From axioms 3.1 and 3.2, it is very easy to arrive at the following

functional equation:

����
=== =

′′��
�

�
��
�

� −
=′′

m

j

jj

n

i

iijiji

n

i

m

j

qphqph
a

a
qqpph

111

2

1 1

),(),(),( ,                                  (21)

where ),(),,( Jqpqp jjii ∈′′ for i = 1,2,..............,n and j  = 1,2,..............,m.

LEMMA 3.2. The continuous solution that satisfies (21) is the continuous solution of the

functional equation:
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PROOF. Let dcba ,,, and dcba ′′′′ ,,,  be positive integers such that
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Taking 1=′=′=′=′ dcba  in (23), we get
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Taking 1=′=′ ba  in (23) and using (24), we have 

�
�

�
�
�

� ′′
�
�

�
�
�

�
��
�

�
��
�

� −
=�

�

�
�
�

� ′′

d

d

c

c
h

ba
h

a

a

bd

d

ac

c
h ,

1
,

1
,

1

2
.                                                               (25)

Again taking 1=′=′ dc  in (23) and using (24), we get
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Now (23) together with (24), (25) and (26) reduces to
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for rational numbers which by continuity of h holds for all real Jqpqp ∈′′   ,  ,  , .

Next we obtain the most general solution of (22).

Generalized R-norm Information Measures



162

LEMMA 3.3.  The most general continuous solutions of equation (22) are given by
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Hence this completes the proof of the theorem 3.1.

REMARKS: In the equation (28) if  0  and  0 == νµ , then

��
�

�
��
�

� −
=

2

1),(
a

a
qph ,

which is a trivial solution and is of no interest. The solution (29) does not even contain

any variable and hence it is to be discarded.

4.  JOINT AND CONDITIONAL GENERALIZED R-NORM INFORMATION

     MEASURES

                  In this section, we consider joint and conditional probability distributions of

two random variables ξ  and η  having probability distributions P and Q over the sets

{ }nxxxX .,,........., 21=   and { }myyyY .,,........., 21=   respectively. Then the

generalized R- norm information measure of type α  and degree β  of the random

variables

ηξ ,  are respectively given by

( ) ( )PHH RR

βαβα ξ ,, =  and ( ) ( )QHH RR

βαβα η ,, = , 

where ( ) nixp ii ............2,1,Pr === ξ   and ( ) mjyq jj ......2,1,Pr === η  are

the probabilities of the possible values of the random variables. Similarly we consider a
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two-dimensional discrete random variable ( )ηξ ,  with the joint probability distribution

{ }nmπππ ,....11=   where ( ) mjniyx jiij ,.....2,1;,...2,1  ,,Pr ===== ηξπ   is

the joint probability for the values ( ) ( )ηξ ,    ofyx ji .

we shall denote conditional probabilities by jiij qandp  such that

��
==

====
n

i

ijj

m

j

ijiijijijij qandppqqP
11

  , πππ

DEFINITION 4.1. The joint generalized R-norm information measure of  type α and

degree β   for +ℜ∈R and αββα 2R0 1,0)R(  1,0  1, ≠+<≠>≤<≥  is

given by

( )
�
�
�

�

�

�
�
�

�

�

�
�

�
�
�

�
−

−+
=

−

= =

−��
Rn

i

m

j

R

ijR
R

R
H

βα

βα
βα π

αβ
ηξ

2

1 1

2
, 1

2
, .                                        (36)

It may be seen that ( )ηξβα ,,

RH  is symmetric in ξ  andη . If ξ  and η  are stochastically

independent, then the following non-additive property holds:

( ) ( ) ( ) ( ) ( )ηξ
αβ

ηξηξ βαβαβαβαβα ,,,,, 2
, RRRRR HH

R

R
HHH

−+
−+= .                 (37)

DEFINITION 4.2. The average conditional generalized R-norm information measure of

type α and degree β  for +ℜ∈R and

αββα 2R0 1,0)R(  1,0  1, ≠+<≠>≤<≥  is given by

( )
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
�
�

�
−

−+
=

−

=

−
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Rm

j

R
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n

i

iR qp
R

R
H

βα

βαβα

αβ
ξη

2

1

2

1

, 1
2

/                                     (38)

or alternately

( )
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
�
�

�
−

−+
=

−

=

−

=

∗∗ ��
Rm

j

R

ji

n

i

iR qp
R

R
H

βα

βαβα

αβ
ξη

2

1

2

1

, 1
2

/ .                                 (39)
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The two conditional measures (38) and (39) differ according to the probabilities ip  have

been taken. The expression (38) is a true mathematical expression overξ , whereas the

expression (39) is not.

In next theorem, we prove three results for the conditional generalized R-norm

information measures given by (38) and (39).

THEOREM 4.1. If  ξ  andη  are discrete random variables then for +ℜ∈R and

αββα 2R0 1,0)R(  1,0  1, ≠+<≠>≤<≥  then the following inequalities

holds

( ) ( )ηξη βαβα ,, / RR HH ≤∗
                                                                                             (40)

( ) ( )ηξη βαβα ,, / RR HH ≤∗∗
                                                                                           (41)

( ) ( )ξηξη βαβα // ,,

RR HH ∗∗∗ ≤                                                                                       (42)

The equality sign holds iff ξ  andη  are independent.

PROOF. We know [ refer Beckenbach and Bellman (1971)] that for

αβ
βα

2    1
2

>+>
−

Ror
R

.

2

1 1

2

2

1

2
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�
�

�
�
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�
                                                    (43)

Setting 0≥= ijijx π  in (43), we have
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j

R

ij

R
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R
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or
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R
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or

.

2

1

2

1

2

1

2
Rm
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R
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i

i

Rm

j

R

j qpq
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It implies

.11
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1

2

1
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− ���

Since ,  0
2

>
−+ αβR

R
 in view of 10     2 ≤<>+ βαβ andR , therefore on

multiplication we get 

( ) ( )ηξη βαβα ,, / RR HH ≤∗
.                                                                                           (46)

On the same lines, we can prove that (46) holds for 10    20 ≤<<+< βαβ andR .

Hence (40) holds for all +ℜ∈R and

αββα 2R0 1,0)R(  1,0  1, ≠+<≠>≤<≥ . The equality sign holds iff ijπ   is

separable in the sense that jiij qp=π .

From Jensen’s inequality for 10    2 ≤<>+ βαβ andR , we find

βα
βα

βα −
−

=

−

=

=�
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�
≥ �� 2

2

1

2

1

R
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R

n

i

jii

R

ji

n

i

i qqpqp  .                                                              (47)

After summation over j and raising both sides to power 
R

βα −2
, we have

Rm

j
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j
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R
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i

i qqp
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���

2

1

2

2

1

2

1

                                                            (48)

Using αβ
αβ

2  ,0
2

>+>
−+

Ras
R

R
  , we get

( ) ( )ηξη βαβα ,, / RR HH ≤∗∗
.                                                                                         (49)
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Equality holds if for all i, jij qq = ,  which is equivalent to the independent property.

For αβ 20 <+< R   the inequality in (48) reverses. However, in view of

αβ
αβ

2 ,0
2

<+<
−+

Ras
R

R
  and 10 ≤< β ,  (49) still holds.

Hence result (41) is proved.

Next for the proof of (42) we apply Jensen inequality and obtain
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It implies
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11                                       (51)

Since ,  0
2

>
−+ αβR

R
 in view of 10     2 ≤<>+ βαβ andR , therefore on

multiplication we get 

( ) ( )ξηξη βαβα // ,,

RR HH ∗∗∗ ≤ , which is the required result.

Hence (42) is proved for all +ℜ∈R and 10 ≤< β

This completes the proof of Theorem 4.1.

5. CONCLUSION 

              In the context of feature selection problem in pattern recognition, many authors

have  studied  upper  and  lower  bounds  on  the  Bayesian  property  of  error.  A relation

between the probability error and average conditional  generalized R-norm information

measures of type α and degree β  can be established in the form of an inequality. In case

1,1 == βα  and  ∞→R ,  this  inequality  can  be  considered  as  the  analog  of  well

known Fano-bound inequality.
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              The mean code length due to Boekee and Lubbe (1980) can be generalized and

the generalized R-norm information measure given by (5) can be applied in study of the

lower and upper bounds of the generalized mean codeword length.
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