ASYMPTOTIC STABILITY OF TIME VARYING DELAY-DIFFERENCE CONTROL SYSTEM WITH TIME-VARYING DELAY OF HOPFIELD NEURAL NETWORKS VIA MATRIX INEQUALITIES*

KREANGKRI RATCHAGIT

Abstract

In this paper, we derive a sufficient condition for asymptotic stability of the zero solution of time varying delay-difference control system with time-varying delay of Hopfield neural networks in terms of certain matrix inequalities by using a discrete version of the Lyapunov second method.

Mathematics Subject Classification 2000: 39A11, 93B52, 92B20

General Terms: Asymptotic Stability, Lyapunov Second Method, Hopfield Neural Networks

Additional Key Words and Phrases: Asymptotic stability, Hopfield neural networks, Lyapunov function, Time varying delay-difference control system with time-varying delay, Matrix inequalities.

1. INTRODUCTION

In this paper, we consider time-varying delay-difference control system with time-varying delay of Hopfield neural networks of the form

\[v(k+1) = -A(k)v(k) + B(k)S(v(k-h(k))) + C(k)u(k) + f, \]

where \(v(k) \in \Omega \subseteq \mathbb{R}^n \) is the neuron state vector, \(h(k) \) is the continuous function describing the time-varying transmission delay in the network system and satisfies \(0 \leq h(k) \leq \bar{h} \), \(A(k) = \text{diag}\{a_1(k), \ldots, a_n(k)\} \), \(a_i(k) \geq 0, \ i=1,2,\ldots,n \) is the \(n \times n \) relaxation matrix functions, \(B(k) \) is the \(n \times n \) weight matrix functions, \(C(k) \) is the \(n \times m \) weight matrix functions, \(u(k) \in \mathbb{R}^m \) is the control vector, \(f = (f_1, \ldots, f_n) \in \mathbb{R}^n \) is the constant external input vector and \(S(z) = [s_1(z_1), \ldots, s_n(z_n)]^T \) with \(s_i \in C^1[\mathbb{R}, (-1,1)] \) where \(s_i \) is the neuron activations and monotonically increasing for each \(i=1,2,\ldots,n \).

The asymptotic stability of the zero solution of the delay-differential system of Hopfield neural networks has been developed during the past several years. We refer to monographs by Burton [3] and Arik [2] and the references cited therein. Much less is known regarding the asymptotic stability of the zero solution of delay-difference system of Hopfield neural networks. Therefore, the purpose of this paper is to establish sufficient condition for the asymptotic stability of the zero solution of (1) in terms of certain matrix inequalities.
2. PRELIMINARIES

We assume that the \(n \)-vector function nonlinear perturbations are bounded and satisfy the following hypotheses, respectively:

\[
0 \leq \frac{f_i(r_1) - f_i(r_2)}{r_1 - r_2} \leq l_i, \quad \forall r_1, r_2 \in \mathbb{R}, \text{ and } r_1 \neq r_2, \tag{2}
\]

where \(l_i > 0 \) are constants for \(i = 1, 2, \ldots, n \).

By assumption (2) we know that the functions \(f_i(\cdot) \) satisfy

\[
\left| f_i(x_i) \right| \leq l_i \left| x_i \right|, \quad i = 1, 2, \ldots, n,
\]

and

\[
f_i^2(x_i) \leq l_i x_i f_i(x_i), \quad i = 1, 2, \ldots, n. \tag{3}
\]

Fact 2.1 For any positive scalar \(\varepsilon \) and vectors \(x \) and \(y \), the following inequality holds:

\[
x^T y + y^T x \leq \varepsilon x^T x + \varepsilon^{-1} y^T y.
\]

Lemma 2.1 [2] The zero solution of difference system is asymptotic stability if there exists a positive definite function \(V(x) : \mathbb{R}^n \rightarrow \mathbb{R}^+ \) such that

\[
\exists \beta > 0 : \Delta V(x(k)) = V(x(k+1)) - V(x(k)) \leq -\beta \| x(k) \|^2,
\]

along the solution of the system. In the case the above condition holds for all \(x(k) \in V_\delta \), we say that the zero solution is locally asymptotically stable.

Lemma 2.2 [3] For any constant symmetric matrix \(M \in \mathbb{R}^{n \times n} \), \(M = M^T > 0 \), scalar \(s \in \mathbb{Z}^+ / \{0\} \), vector function \(W : [0, s] \rightarrow \mathbb{R}^n \), we have

\[
s \sum_{i=0}^{s-1} (w^T(i) M w(i)) \geq \left(\sum_{i=0}^{s-1} w(i) \right)^T M \left(\sum_{i=0}^{s-1} w(i) \right).
\]

3. MAIN RESULTS

In this section, we consider the sufficient condition for asymptotic stability of the zero solution \(v^* \) of (1) in terms of certain matrix inequalities. Without loss of generality, we can assume that \(v^* = 0, S(0) = 0 \) and \(\dot{f} = 0 \) (for otherwise, we let \(x = v - v^* \) and define

\[
S(x) = S(x + v^*) - S(v^*).
\]

The new form of (1) is now given by
ASYMPTOTIC STABILITY OF TIME VARYING DELAY-DIFFERENCE CONTROL SYSTEM WITH TIME-VARYING DELAY OF HOPFIELD NEURAL NETWORKS VIA MATRIX INEQUALITIES

\[
x(k+1) = -A(k)x(k) + B(k)S(x(k-h(k))) + C(k)u(k)
\]
(4)

This is a basic requirement for controller design. Now, we are interested designing a feedback controller for the system (4) as
\[
u(k) = Kx(k)
\]
where \(K \) is \(n \times m \) constant control gain matrix.

The new form of (4) is now given by
\[
x(k+1) = -A(k)x(k) + B(k)S(x(k-h(k))) + C(k)Kx(k)
\]
(5)

Theorem 3.1 The zero solution of the delay-difference system (5) is asymptotically stable if there exist symmetric positive definite matrices \(P, G, W, L = \text{diag} [l_1, \ldots, l_n] > 0 \) and \(\varepsilon > 0 \) satisfying the following matrix inequalities of the form

\[
\psi = \begin{pmatrix}
(1,1) & 0 & 0 \\
0 & (2,2) & 0 \\
0 & 0 & (3,3)
\end{pmatrix} < 0,
\]
(6)

where
\[
(1,1) = A(k)PA(k) - A(k)PC(k)K - K^TPC(k)PA(k)
\]
\[
- C^T(k)K^T(k)PC(k) - P + h(k)G + W + \varepsilon A(k)PB(k)B^T(k)PA(k)
\]
\[
+ \varepsilon K^TPB(k)B^T(k)PC(k)K
\]
\[
(2,2) = \varepsilon^{-1}LL + \varepsilon_1^{-1}LL + LB^T(k)PB(k)L - W
\]
\[
(3,3) = -h(k)G.
\]

Proof Consider the Lyapunov function
\[
V(y(k)) = V_1(y(k)) + V_2(y(k)) + V_3(y(k)),
\]
where
\[
V_1 = x^T(k)Px(k),
\]
\[
V_2 = \sum_{i=k-h(k)}^{k-1} (h(k) - k + i)x^T(i)Gx(i),
\]
\[
V_3 = \sum_{i=k-h(k)}^{k-1} x^T(i)Wx(i),
\]

* Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication, and its date of appear.
$P, G,$ and W being symmetric positive definite solutions of (6) and $y(k) = [x(k), x(k-h)]$.

Then difference of $V(y(k))$ along trajectory of solution of (5) is given by

$$\Delta V(y(k)) = \Delta V_1(y(k)) + \Delta V_2(y(k)) + \Delta V_3(y(k)),$$

where

$$\Delta V_1(y(k)) = V_1(x(k+1)) - V_1(x(k))$$
$$= [-A(k)x(k) + B(k)S(x(k-h(k))) + C(k)Kx(k)]^T \times P [-A(k)x(k) + B(k)S(x(k-h(k))) + C(k)Kx(k)]$$
$$- x^T(k)Px(k)$$
$$= x^T(k)[A(k)PA(k) - A(k)PC(k)K - K^T C^T(k)PA(k) - C^T(k)K^T PC(k) - P]x(k)$$
$$- x^T(k)A(k)PB(k)S(x(k-h(k)))$$
$$- S^T(k(x-k(h(k))))B^T(k)PA(k)x(k)$$
$$+ x^T(k)K^T C^T(k)PB(k)S(x(k-h(k)))$$
$$+ S^T(k(x-k(h(k))))B^T(k)PC(k)Kx(k)$$
$$+ S^T(k(x-k(h(k))))B^T(k)PB(k)S(x(k-h(k))),$$

$$\Delta V_2 = \Delta \left(\sum_{i=k-h(k)}^{k-1} (h(k) - k + i)x^T(i)Gx(i) \right) = h(k)x^T(k)Gx(k)$$
$$- \sum_{i=k-h(k)}^{k-1} x^T(i)Gx(i),$$

and

$$\Delta V_3 = \Delta \left(\sum_{i=k-h(k)}^{k-1} x^T(i)Wx(i) \right) = x^T(k)Wx(k) - x^T(k-h(k))Wx(k-h(k)), \quad (7)$$

where (3) and Fact 2.1 are utilized in (7), respectively.

Note that

* Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication, and its date of appear.
ASYMPTOTIC STABILITY OF TIME VARYING DELAY-DIFFERENCE CONTROL SYSTEM WITH TIME-VARYING DELAY OF HOPFIELD NEURAL NETWORKS VIA MATRIX INEQUALITIES

\[-x^T(k)A(k)PB(k)S(x(k-h(k))) - S^T(k)(x(k-h(k)))B^T(k)PA(k)x(k) \leq \varepsilon x^T(k)A(k)PB(k)B^T(k)PA(k)x(k) + \varepsilon^{-1}S^T(k)(x(k-h(k)))S(x(k-h(k))),\]

\[\begin{align*}
&x^T(k)K^T(k)PB(k)S(x(k-h(k))) + S^T(k)(x(k-h(k)))B^T(k)PC(k)Kx(k) \\
&\leq \varepsilon x^T(k)K^T(k)PB(k)B^T(k)PC(k)KC(k)x(k) \\
&+ \varepsilon^{-1}S^T(k)(x(k-h(k)))S(x(k-h(k))),
\end{align*}\]

\[S^T(k)(x(k-h(k)))B^T(k)PB(k)S(x(k-h(k))) \leq x^T(k)(k-h(k))LB^T(k)PB(k)Lx(k-h(k)),\]

\[\varepsilon^{-1}S^T(k)(x(k-h(k)))S(x(k-h(k))) \leq \varepsilon^{-1}x^T(k)(k-h(k))LLx(k-h(k)),\]

\[\varepsilon^{-1}S^T(k)(x(k-h(k)))S(x(k-h(k))) \leq \varepsilon^{-1}x^T(k)(k-h(k))LLx(k-h(k)).\]

Hence

\[\Delta V'_1 \leq x^T(k)[A(k)PA(k) - A(k)PC(k)K - K^T(k)C^T(k)PA(k) - C^T(k)K^T(k)PC(k) - P]x(k) + \varepsilon x^T(k)A(k)PB(k)B^T(k)PA(k)x(k) + \varepsilon^{-1}x^T(k)(k-h(k))LLx(k-h(k)) + \varepsilon^{-1}x^T(k)(k-h(k))LLx(k-h(k)).\]

Then we have

\[\begin{align*}
\Delta V &\leq x^T(k)[A(k)PA(k) - A(k)PC(k)K - K^T(k)C^T(k)PA(k) - C^T(k)K^T(k)PC(k) - P]x(k) \\
&+ \varepsilon x^T(k)A(k)PB(k)B^T(k)PA(k)x(k) + \varepsilon^{-1}x^T(k)(k-h(k))LLx(k-h(k)) + \varepsilon^{-1}x^T(k)(k-h(k))LLx(k-h(k)) \\
&- W]x(k-h(k)) \\
&- \sum_{i=k-h(k)}^{k-1} x^T(i)Gx(i).
\end{align*}\]

Using Lemma 2.2, we obtain
\[
\sum_{i=k-h(k)}^{k-1} x^T(i)Gx(i) \geq \left(\frac{1}{h(k)} \sum_{i=k-h(k)}^{k-1} x(i) \right)^T \left(h(k)G \right) \left(\frac{1}{h(k)} \sum_{i=k-h(k)}^{k-1} x(i) \right).
\]

From the above inequality it follows that:

\[
\Delta V \leq x^T(k) \left[A(k)PA(k) - A(k)PC(k)K - K^T C^T(k)PA(k) - C^T(k)K^T PC(k) - P + h(k)G + W + \varepsilon A(k)PB(k)B^T(k)PA(k) + \varepsilon_1 K^T C^T(k)PB(k)B^T(k)PC(k)K \right] x(k)
\]

\[
+ x^T(k-h(k)) \left[\varepsilon^{-1} L + \varepsilon_1^{-1} LL + LB^T(k)PB(k)L - W \right] x(k-h(k))
\]

\[
- \left(\frac{1}{h(k)} \sum_{i=k-h(k)}^{k-1} x(i) \right)^T \left(h(k)G \right) \left(\frac{1}{h(k)} \sum_{i=k-h(k)}^{k-1} x(i) \right)
\]

\[
= \begin{pmatrix}
 x^T(k), x^T(k-h(k)), \left(\frac{1}{h(k)} \sum_{i=k-h(k)}^{k-1} x(i)i \right)
\end{pmatrix} \begin{pmatrix}
 (1,1) & 0 & 0 \\
 0 & (2,2) & 0 \\
 0 & 0 & (3,3)
\end{pmatrix}
\]

\[
x(k)
\]

\[
x(k-h(k))
\]

\[
\left(\frac{1}{h(k)} \sum_{i=k-h(k)}^{k-1} x(i) \right)
\]

\[
y^T(k)\psi(y(k),
\]

where

\[
(1,1) = A(k)PA(k) - A(k)PC(k)K - K^T C^T(k)PA(k)
\]

\[-C^T(k)K^T PC(k) - P + h(k)G + W
\]

\[+ \varepsilon A(k)PB(k)B^T(k)PA(k)
\]

\[+ \varepsilon_1 K^T C^T(k)PB(k)B^T(k)PC(k)K,
\]

\[(2,2) = \varepsilon^{-1} L + \varepsilon_1^{-1} LL + LB^T(k)PB(k)L - W,
\]

\[(3,3) = -h(k)G,
\]
ASYMPTOTIC STABILITY OF TIME VARYING DELAY-DIFFERENCE CONTROL
SYSTEM WITH TIME-VARYING DELAY OF HOPFIELD NEURAL NETWORKS
VIA MATRIX INEQUALITIES

\[y(k) = \begin{pmatrix}
 x(k) \\
 x(k - h(k)) \\
 \frac{1}{h(k)} \sum_{i=k-h(k)}^{k-1} x(i)
 \end{pmatrix}. \]

By the condition (6), \(\Delta V(y(k)) \) is negative definite, namely there is a number \(\beta > 0 \) such that \(\Delta V(y(k)) \leq -\beta \| y(k) \|^2 \), and hence, the asymptotic stability of the system immediately follows from Lemma 2.1. This completes the proof.

Remark 3.1 Theorem 3.1 gives a sufficient condition for the asymptotic stability of delay-difference system (5) via matrix inequalities. These conditions are described in terms of certain diagonal matrix inequalities, which can be realized by using the linear matrix inequality algorithm proposed in [4]. But Hu and Wang [7] these conditions are described asymptotic stability of delay-difference system via matrix inequalities in terms of certain symmetric matrix inequalities, which can be realized by using the Schur complement lemma and linear matrix inequality algorithm proposed in [4].

Example 3.1 Let us consider the delay-difference system (4), given by the system

\[x(k+1) = -A(k)x(k) + B(k)S(x(k-h(k)))+C(k)u(k), \]

where the matrices are

\[A(k) = \begin{pmatrix}
 1.9 - 0.5e^{-5.8t} & 0 \\
 0 & 0.5e^{-t} - 2
 \end{pmatrix}, B(k) = \begin{pmatrix}
 3 - e^{6t} & -1 \\
 0 & -0.5e^{-2t}
 \end{pmatrix}, \]

\[C(k) = \begin{pmatrix}
 e^t & -1 \\
 1 & e^{-t}
 \end{pmatrix}, \]

\[s_i(x_i) = \frac{2}{\pi} \tan^{-1}(x_i), i = 1, 2, \quad K = (1.2369 \quad 3.9865), \varepsilon = 0.5, \varepsilon_1 = 0.5, \quad \text{and} \quad 0 \leq h(k) = e^{-k} \leq 1. \]

Using the LMI Toolbox in MATLAB, we found that the LMIs in Theorem 3.1 are feasible and
K. RATCHAGIT

\[P = \begin{pmatrix} 0.2795 & 0.0722 \\ 0.0722 & 0.5725 \end{pmatrix}, \quad G = \begin{pmatrix} 3.4259 & 0.0183 \\ 0.0183 & 3.6663 \end{pmatrix}, \quad W = \begin{pmatrix} 0.9018 & 0.3625 \\ 0.3625 & 1.0628 \end{pmatrix} \]

are the set of solutions to the LMIs (6).

By a straightforward, we have

\[\psi = \begin{pmatrix} -0.4890 & 0 \\ 0 & -0.8251 \end{pmatrix}. \]

The eigenvalues are -0.4890 and -0.8251, respectively. This implies the matrix \(\psi < 0 \). It follows from Lemma 2.1 that the zero solution of time varying delay-difference control system with time-varying delay of Hopfield neural networks is asymptotically stable.

Therefore, the system is asymptotically stable.

Fig. 3.1. Numerical simulation of a solution for the example 3.1.

For a given initial condition \(x(\theta) = [1, 1]^T \), convergence behavior of is shown in Fig. 3.1. As we can see from this figure, the steady state of delay-difference system is indeed asymptotically stable.

4. CONCLUSIONS

In this paper, based on a discrete analog of the Lyapunov second method, we have established a sufficient condition for the asymptotic stability of time varying delay-

* Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication, and its date of appear.
ASYMPTOTIC STABILITY OF TIME VARYING DELAY-DIFFERENCE CONTROL SYSTEM WITH TIME-VARYING DELAY OF HOPFIELD NEURAL NETWORKS VIA MATRIX INEQUALITIES

difference control system with time-varying delay of Hopfield neural networks in terms of certain matrix inequalities.

ACKNOWLEDGMENTS

This work was partially done by the author during his research at the Hannover University (Germany), and the work is supported by the National Basic Program in Natural Sciences, Germany. The authors would like to thank anonymous referees for valuable comments, which improved the paper.

REFERENCES

Kreangkri Ratchagit
Department of Mathematics,
Faculty of Science, Maejo University,
Chiang Mai 50290, Thailand.

Received January 2009

* Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication, and its date of appear.