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TWO NOTES ON SIMILARITIES
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Abstract

In this paper we study two problems concerning real numbers similarities, associate fuzzy qu-

antities and pseudometrics. The first is concerning the relationship between similarities and

s-generating fuzzy quantities, the other relates to pseudometrics built by means of similarities and
respective convergence.
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1. INTRODUCTION

In this article we deal with some types of binary fuzzy relations modeling equiva-
lence, proximity, or similarity of real numbers. There are several kinds of fuzzy
relations, fuzzyfying these notions. One significant type is represented by fuzzy
relations, called nearnesses (see for example [2], [3], [4], [5]), the other by fuzzy

equivalence relations.
These are studied since 1965, when Lotfi Zadeh, in his first paper on fuzzy sets,

defined the notion of a fuzzy binary relation.
In what follows we will deal with one particular kind of fuzzy equivalence relati-

ons, introduced also by Lotfi Zadeh (1971), called similarity relations.

We will study similarity relations defined on the universe of real numbers R

by means of fuzzy quantities. In the first part we discuss a problem concerning
correspondence between a fuzzy quantity and the associate similarity relation. In
the second part relationship between similarities and derived pseudometrics.

First, let us briefly recall some basic concepts. For more details see for instance
[6].

2. PRELIMINARY RESULTS

Definition 1.

A binary fuzzy relation S on the universe R is called a similarity relation (or
briefly similarity) on R if and only if it is reflexive, symmetric and transitive
w.r.t.minimum, it means, if and only if for any x, y, z ∈ R:

(S1) S(x, x) = 1

(S2) S(x, y) = S(y, x)

(S3) min(S(x, z), S(y, z)) ≤ S(x, y).

It is clear that real binary fuzzy relation S defined by :
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Sf (x, y) =

{

1, if x = y,

min(f(x), f(y)), if x �= y
(1)

where f is a fuzzy quantity, that is to say a function defined on R, with values from
the interval 〈0, 1〉, is a similarity.

In what follows we will call such a fuzzy quantity f the S-generating quantity.

It is obvious that properties of such a similarity Sf depend on properties of the
S-generating quantity f (see [1], [2]).

Definition 2.

A real function of a real variable f is said to be lower semicontinuous at a point
x0 ∈ R if

f(x0) ≤ lim inf
x−>x0

f(x)

and it is said to be lower semicontinuous, if it is lower semicontinuous at each point
of its domain of definition.

3. FROM FUZZY QUANTITY TO SIMILARITY AND BACKWARDS

Proposition 1.

Let f be a fuzzy quantity and Sf be the associate similarity. If g is a fuzzy
quantity, defined for each x ∈ R by

g(x) = sup(Sf (x, y), y �= x) (2)

then g(x) ≤ f(x), for each x ∈ R and Sg(x, y) = Sf (x, y), for each couple x, y ∈ R.
If moreover f is a lower semicontinuous function, then g(x) = f(x), for each x ∈ R.

Proof. g(x) ≤ f(x), and Sg(x, y) = Sf (x, y) follows quite easily from the definitions.

Let us suppose that f is lower semicontinuous, let x0 ∈ R, then

g(x0) = sup(Sf (x0, x), x �= x0) = sup(min(f(x0), f(x)), x �= x0) ≥

≥ lim sup
x−>x0

f(x) ≥ lim inf
x−>x0

f(x) ≥ f(x0)

As the following example shows, the assumption of lower semicontinuity for the
equality g(x) = f(x) is not necessary.

Example 1.

Consider two real numbers a, b, such that 0 ≤ a < b ≤ 1 and a fuzzy quantity f ,
defined by

f(x) =

{

a, if x < 0,

b, if x ≥ 0

Then

Sf (x, y) =

⎧

⎨

⎩

a, if x �= y ∧ min(x, y) < 0,

b, if x �= y ∧ min(x, y) ≥ 0,

1, if x = y
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Since lim inf
x→0

f(x) = a < b = f(0), f is not lower semicontinuous at 0.

If we define a fuzzy quantity g according the formula (2), it can be easily seen
that g(x) = f(x) for each x ∈ R.

Figure 1 shows graph of Sf (Sf ≡ Sg) for values a = 1

4
, b = 3

4
on the interval

〈−3, 4〉 × 〈−3, 4〉.

Fig. 1. Figure 1.

On the other hand, if we omit assumption of lower semicontinuity, the equality
f = g need not be valid.

Example 2.

Define a fuzzy quantity f by

f(x) =

{

1

2+x2 , if x �= 0,

1, if x = 0

It is obvious that f is not lower semicontinuous at 0 and it is clear that the

function g defined by means of (2) is not identical with f , since g : y =
1

2 + x2
,

hence g(0) =
1

2
. But in spite of that it holds:

Sf (x, y) =

{

min( 1

2+x2 , 1

2+y2 ), if x �= y,

1, if x = y

Graph of Sf (Sf ≡ Sg) on the interval 〈−4, 4〉 × 〈−4, 4〉 is shown in Figure 2.
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Fig. 2. Figure 2.

4. SIMILARITY TO PSEUDOMETRIC AND BACKWARDS

If we restrict ourselves to the pseudometrics with values from the interval 〈0, 1〉,
then a pseudometric d is a binary fuzzy relation, which is reflexive, symmetrical
and satisfies the triangular inequality. In what follows we assume d to be such a
pseudometric in the space of real numbers R.

In [2] there are investigated some questions, concerning to the relation between
similarities and pseudometrics in R. There it is proved, that if S is a similarity,
defined by means of (1), then the fuzzy relation R = 1 − S is a pseudometric
(Proposition 5 in [2]).

Continuing this investigation of relationship between fuzzy quantities, similarities
and pseudometrics, we can simply prove

Proposition 2.

Let f be a fuzzy quantity. Then the real binary fuzzy relation df , defined for each
x, y ∈ R by

df (x, y) =

{

0, if x = y,

max(f(x), f(y)), if x �= y
(3)

is a pseudometric.

Proof. It follows easily from definition of the pseudometric.

In general, if d is a pseudometric, then the fuzzy relation R = 1 − d need not
be a similarity [Example 3 in [2]]. It always satisfies a little weaker type of fuzzy
transitivity:

Proposition 3.

Let d be a pseudometric. Then the fuzzy relation R, defined for each x, y ∈
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R by R = 1 − d is TL-equivalence relation, i.e. fuzzy equivalence relation w.r.t.
Lukasiewicz t-norm.

Proof. We have only to show, that R is TL-transitive. From triangular inequality
of d we have:

1 − R(x, z) + 1 − R(y, z) ≥ 1 − R(x, y) ⇒ R(x, z) + R(y, z) − 1 ≤ R(x, y)

It follows

TL(R(x, z), R(y, z)) ≤ R(x, y), ∀ x, y, z ∈ R

In case if pseudometric is defined like in Proposition 2, then there is a one-to-one
correspondence between families of pseudometrics and similarities.

Proposition 4.

Let f be a fuzzy quantity and df be the pseudometric defined by (3). Then the
fuzzy relation R, defined for each x, y ∈ R by R = 1 − df is the similarity S1−f ,
defined by (2) and conversely, if Sf is the similarity defined by (2), then the fuzzy
relation R, defined for each x, y ∈ R by R = 1 − Sf is the pseudometric d1−f

defined by (3).

Proof. It follows from the equality

max(f(x), f(y)) = 1 − min(1 − f(x), 1 − f(y)),

from Proposition 2 and finally from the fact, that f is a fuzzy quantity just if 1− f

is a fuzzy quantity.

Pseudometric df , for any fuzzy quantity f , seems to be a little unusual, compared
with standard metrics or pseudometrics in R. Directly from its definition it follows

Proposition 5.

Let df be a pseudometric defined by (3). Then

max(df (x, z), df (y, z)) ≥ df (x, y), ∀ x, y, z ∈ R

Corollary 1.

Let df be a pseudometric defined by (3). Then for arbitrary three real numbers
x, y, z it holds:

df (x, y) = df (y, z) ≥ df (x, z)
∨

df (x, y) = df (x, z) ≥ df (y, z)
∨

∨

df (x, z) = df (z, y) ≥ df (x, y)

Corollary 2.

Let df be a pseudometric defined by (3). Then for arbitrary sequence of real
numbers {xn} and for arbitrary real number x0 it holds:

lim
n→∞

df (xn, x0) = 0 ⇔ lim
n→∞

f(xn) = 0
∧

f(x0) = 0
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It means, that the only convergent sequences in a pseudometric df are sequences
with the correspondent sequence of functional values f converging to 0 and df -
limits of these sequences are all numbers at which f vanishes. If f(x0) �= 0, then
x0 is a df -isolated point.

Moreover, if fuzzy quantity (function) 1 − f is convex, then as follows from
Proposition 4 in [1], the following proposition is valid.

Proposition 6.

Let df be a pseudometric defined by (3), let 1−f be convex fuzzy quantity and let
x, y ∈ R, x < y . Then in the interval 〈x, y〉 there exists a sequence of real numbers
couples {xn, yn}, such that lim

n→∞
|xn − yn| = 0 and df (xn, yn) = df (x, y) for each

natural n.

Geometric consequence of this proposition is illustrated with Figure 3 showing
graph of df on 〈−4, 4〉 × 〈−4, 4〉 and contour lines of this graph, for

f(x) =

{

|x|−1

|x| , if |x| > 1,

0, if |x| ≤ 1

Fig. 3. Figure 3.

It is simple to see, that the function

1 − f(x) =

{

1

|x| , if |x| > 1,

1, if |x| ≤ 1

is convex, hence the assumption and therefore also the assertion of Proposition 6
is fulfilled.

Notice that all contour lines are ïntersecting"the straight line y = x. It is straight-
forward geometrical consequence of Proposition 6.
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